Nexans Olex Power Cable Catalogue

www.olex.co.nz

HEAD OFFICE

69 Paraite Road Bell Block New Plymouth New Zealand

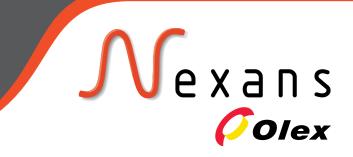
PHONE 0800 OLEX NZ

AUCKLAND BRANCH

105 Hugo Johnston Drive Penrose Auckland 1061 New Zealand

CHRISTCHURCH BRANCH

35 Phillips Street Linwood Christchurch New Zealand


EMAIL technical.olexnz@nexans.com

2012 EDITION

Nexans Olex New Zealand

Power Cable Catalogue

Nexans Olex New Zealand

Power Cable Catalogue

TABLE OF CONTENTS

Nexans *Colex*

PAGE

Se	ction One - Introd	luction	1
	Company Profile		2
	Technical Service and Supp	port	3
	Quality Assurance		4
Se	ection Two - Gene	ral Technical Information	1
	Installation Information		2
	Installation Methods		4
	Single Core Cables in Paral	lel	7
	Rating Factors		8
	Bending Radii and Duct Size	es	10
	Pulling Tension		11
	Short Circuit Ratings		12
	Conductor Short Circuit Rati	ings	13
	Conductor Max DC Resistar	nces	14
	Conductor Dimensions		15
	Wire and Cable Size Compa	arison	16
	Notes		18
Se	ection Three - Low	v Voltage Cables	1
	Notes		3
	Explanatory Information	- Construction	4
		- Current Ratings	5
		- Rating Factors	6
		- Voltage Drops	8
		- Selection Procedures	10
		-Minimum Copper Earthing Conductor Size	11
	Product Sheets (See Sectio	n Three Contents Page 1 for Product Sheets Listing)	12
	Tabulated Electrical Data	- Current Ratings	76
		- Voltage Drops	92
		- AC Resistances	94
		- Reactances	96
		- Volt Drop Graphs	98

TABLE OF CONTENTS (CONT.)

PAGE

Section Four - Medi	um Voltage TR-XLPE Cables	1
Explanatory Information	- Construction	2
	- Screen Designs	4
	- Testing	5
	- Test Voltage Levels	6
	- Installation Tests	7
	-Current Ratings	9
	- Rating Factors	10
Product Sheets (See Sect	ion Four Contents Page 1 for Product Sheets Listing)	12
Notes		56
Section Five - Aeria	ls	1
Explanatory Information	- Thermal Characteristics	2
	- Electrical Characteristics	4
	- Physical and Mechanical Characteristics	5
	- Bare Overhead Conductors	7
Product Sheets (See Section	on Five Contents Page 1 for Product Sheets Listing)	8
Notes		22

SECTION ONE - INTRODUCTION

	PAGE
Company Profile	2
Technical Service and Support	3
Quality Assurance	4

COMPANY PROFILE

Power cables have been manufactured and tested at the Nexans Olex Bell Block factory on the outskirts of New Plymouth for more than 40 years. Established in 1967 as a joint venture between Tolley and Son and Canada Wire and Cable Company of Toronto, it was known as Canzac until 1984 when it was purchased by the Pacific Dunlop Group, one of Australia's largest international companies, and became part of the Pacific Dunlop Cables Group. In 1999 Olex Cables (New Zealand), together with other Pacific Dunlop Cables Group businesses, was bought by a Management Buyout Consortium (MBO), and then was known as Olex New Zealand Limited, a Subsidiary of Olex Holdings Pty Limited. It was in 2006 that the MBO consortium sold its shares in Olex Holdings to Nexans. The acquisition by Nexans became effective in December 2006.

Nexans Olex is a world leader in cable technology and production and has manufacturing facilities in New Plymouth and Melbourne. Each site has been designed to efficiently manufacture specific product groups to cater for the needs of the industry. With over 40 years experience behind it, Nexans Olex employs more than 1500 people and has the financial backing, the expertise and the commitment to maintain and expand its position as a world leader in cable technology, manufacturing and installation.

At its New Plymouth factory, Nexans Olex produces a wide range of electrical power cables, ranging from building wires and control cables to power cables with rated voltages up to 35 kV. Complementing this range is a wide selection of power and data/communications cables manufactured by other Nexans factories around the world.

Nexans Olex has proven its expertise and commitment to quality and service in fulfilling contracts in many New Zealand and international markets. The company has a strong commitment to further growth and expansion internationally.

With this background, Nexans Olex is well placed to retain its leading role in terms of customer service, quality and research.

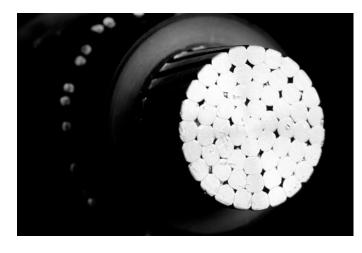

TECHNICAL SERVICE AND SUPPORT

Nexans Olex's extensive technical resources mean that a cable can be designed to meet the exact needs of a customer. The standard range of cables may contain a cable that will do the required job, but Nexans Olex's commitment is to ensure that a cable's capabilities meet the precise requirements of the installation.

This may mean that a standard cable needs to be modified for optimum performance or have a new feature added - this is a normal part of the Nexans Olex service.

Nexans Olex's technical support does not finish with the successful design and production of the cable. In addition, a comprehensive cable advisory service is also offered. Technical staff are available to assist in providing expert solutions to all types of cable problems and inquiries.

QUALITY ASSURANCE


For Nexans Olex, quality means the ability to satisfy the needs of its customers, its employees and the proprietors. Accordingly, Nexans Olex recognises the nature of these relationships and has linked these three essential needs together to form a policy cornerstone.

Quality is important as its inherent cost effectiveness contributes to the competitiveness of the company's products and services, and to profitability and growth. The contribution of every member of the Nexans Olex team to the quality of products, to customer service and the company is essential to the goal of excellence through quality.

Nexans Olex has developed and implemented Quality Management using the AS/NZS/ISO 9001 standard as the model for quality assurance and the criteria for third party accreditation through Bureau Veritas Certification. There is flexibility to merge additional customer requirements into the routine Quality Verification Plans.

Whilst each company within Nexans is individually responsible for the quality of its own cable products and services, each has achieved third party accreditation to at least the ISO 9001 level. This parity in quality management provides Nexans Olex with the flexibility to access the entire product ranges of all companies within Nexans without compromising its own quality management standards

Nexans Olex offers only brand name accessory products from suppliers with a history of product quality and service. When required, details of the suppliers' quality systems and any third party accreditation to recognised Quality Assurance Standards can be supplied.

GENERAL TECHNICAL INFORMATION

SECTION TWO - GENERAL TECHNICAL INFORMATION

	PAGE
Installation Information	2
Installation Methods	4
Single Core Cables in Parallel	7
Rating Factors	8
Bending Radii and Duct Sizes	10
Pulling Tension	11
Short Circuit Ratings	12
Conductor Short Circuit Ratings	13
Conductor Max DC Resistances	14
Conductor Dimensions	15
Wire and Cable Size Comparison	16
Notes	18

INSTALLATION INFORMATION

General

All cables must be installed to comply with the latest New Zealand Wiring Regulations.

Moisture

Nexans Olex cables are manufactured in conditions that exclude moisture, as it is difficult to remove from a finished cable. It is important that precautions are taken during installation to ensure that moisture is not permitted to enter the cable. Cut ends or opened areas must be protected from moisture at all times, including during pulling in. Cables, after cutting, must be re-sealed for storage, by an effective method such as a heat shrinkable cable cap.

Single Core Cables

The following points relating to single core cables should be noted:

1. Single core cables carrying the phase currents of a single circuit must be installed as closely as possible together, to minimise inductive reactance and voltage drop. The preferred formation for three phase conductors is a "trefoil" or cloverleaf pattern although flat touching formation is also acceptable. Sheaths should be in contact with one another in either case.

2. A single core cable generates an alternating magnetic field around itself which can cause large increases in voltage drop and power loss due to "transformer effect" when ferrous metal (iron and steel) is allowed to encircle the cable. Steel racking or ladder will not induce this effect, but the following must be observed:

a. Cable cleats may be of wood, plastic, or non-ferrous metal but steel saddles should not be used on single cores. b. Where three single phase cables pass through a steel bulkhead, they must all pass through the same hole. Where glanding is required, it is usual to cut out a panel and replace this with a non-ferrous (metal or plastic) plate in which the three or four glands are mounted.

Cable Support

Under fault conditions, single core cables used as phase conductors in a multi-phase system may be subjected to large electromechanical forces which tend to drive them apart. Generally, properly designed cleats spaced at 1500 mm intervals will provide adequate support to the cable under normal operating conditions. However special consideration may be required if fault currents in excess of 15 kA are anticipated.

Green Goo

Also known as "Green Slime", this phenomenon is characterised by the appearance of a sticky green exudate leaking out of PVC-insulated wiring at locations such as switches, hot points and light fittings. It is a common occurrence in both Australia and New Zealand.

The green goo problem is predominantly associated with older (25+ years) TPS-type cables operating in a warm environment. The exudate comprises a plasticiser that has migrated out of the PVC insulation, coloured due to reaction with the copper conductor, and that has subsequently travelled - by capillary action and/or gravity – along the conductor to emerge at a termination point.

Due to its stickiness and unsightly colour, the goo has a high nuisance value, however it poses no significant health hazard. It may be cleaned from surfaces by wiping with a rag soaked in a petroleum- or alcohol-based solvent (such as meths).

The long-term consequence of the exudate is that it represents a de-plasticising of the insulation, meaning that as the process continues, the PVC will eventually become brittle, and crack.

INSTALLATION INFORMATION (CONT.)

TPS Cables in Polystyrene Thermal Insulation

With the increasing use of polystyrene block insulation in houses and caravans, it is important to explain the potential problem that arises when PVC sheathed and insulated cables come into direct contact with this material. The plasticiser that is added to PVC to make it flexible, has a tendency to migrate out of the PVC and into materials with which it is in contact, particularly where those materials – such as polystyrene and polyurethane - have a great affinity for the plasticiser. This will lead to the PVCs becoming progressively harder and more brittle, while in contrast the polystyrene will appear to "melt" as it absorbs the plasticiser.

The rate of migration is dependent upon the relative thickness of the materials, the temperature, and the amount of surface area in direct contact. Accordingly, the rate of deterioration of the PVC cable can vary considerably under different circumstances.

To mitigate the problem it is recommended that the amount of direct contact between the cable and the polystyrene be reduced as much as possible. Effective ways of achieving this include positioning the cable with an air gap between the sheath and the polystyrene, or installing the cable within a rigid PVC or PE conduit.

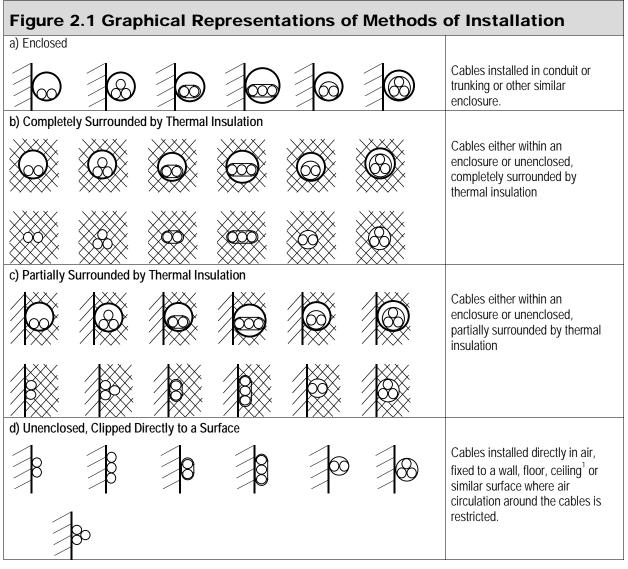
UV Resistance

Many polymers, due to their molecular structure, are prone to attack by UV radiation, and because of this will degrade upon continued exposure to sunlight, eventually cracking and splitting. The polyolefin family of materials, such as PE (including XLPE or X-90) and PP is particularly susceptible to deterioration in this manner. PVC is also at risk but noticeably less so, partly because of its structure but also due to the mitigating effects of the fillers, plasticisers and stabilisers that are compounded with it.

A simple, effective and cheap material that can be added to plastic compounds to absorb UV radiation is carbon black. However, while this approach is appropriate for sheathing materials, it is not necessarily so for insulating materials as the carbon masks the core colour.

Nexans Olex recommends that the insulation of its cables be protected (covered) from solar radiation at all times, except in those instances where the material has been deliberately modified to guard against the effects of UV, eg, Aerial Bundled Cables (ABC). This covering may simply be the sheath of the cable.

Lugs and Links

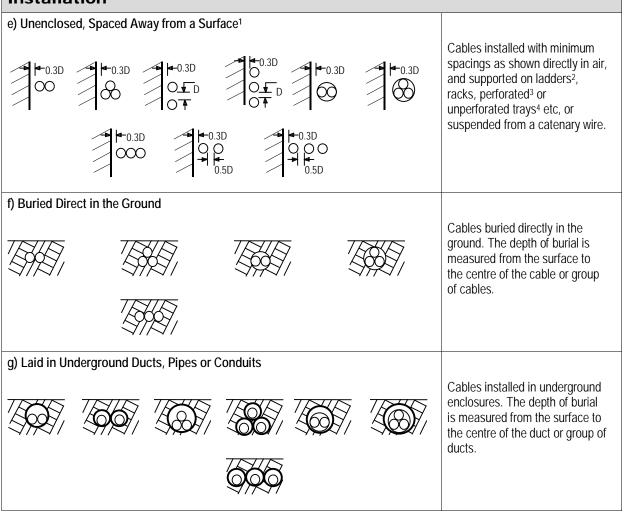

Stranded compacted conductors, either round or sector shaped, must have lugs and links fitted that are manufactured for the same nominal cross-sectional area as the conductor. For example, a 150 mm² conductor must have a 150 mm² lug or link fitted, and the correct dies, as stated by the manufacturer, used to compress it.

Although the lug or link will appear to be loose on the conductor, this is simply because the initial compression of the joint has already taken place during the manufacture of the conductor; the final compression of the joint will be correct.

If, for example, a 120 mm² lug or link was fitted to a 150 mm² conductor, the joint would be over-compressed and likely to fail in service. In addition, the smaller lug in itself would be unable to carry the same maximum current as the larger conductor, particularly with respect to fault currents.

Nexans Olex manufactures conductors to be compatible with lugs and links normally available in New Zealand.

INSTALLATION METHODS



Note:

1. Refer to Table 2.1 for derating factors which apply for single circuits of cables installed under a ceiling or similar horizontal surface.

INSTALLATION METHODS (CONT.)

Figure 2.1 (cont.) Graphical Representations of Methods of Installation

Notes:

1. D = Cable OD (or Width, in the case of a flat cable).

2. Ladder support is one where the supporting metalwork which provides impedance to air flow occupies less than 10% of the plan area under the cables.

3. Perforated trays are those in which not less than 30% of the surface area is removed by perforation.

4. Refer to Table 2.2 for derating factors which apply even for single circuits of cables installed on perforated or unperforated trays.

5. Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standards for full details.

INSTALLATION METHODS (CONT.)

Figure 2.2 Minimur	Figure 2.2 Minimum Spacings in Air to Avoid Derating						
Method of Installation	Horizontal Spacings	Vertical Spacings					
a) Single Core Cables							
Cables spaced away from surfaces and supported on ladders, racks, etc. or suspended from a catenary wire, such that impedance to air flow around the cables is not greater than 10%.							
Cables spaced away from surfaces and supported on perforated or unperforated trays such that air flow around the cables is partially restricted.							
Cables fixed directly to a wall, floor, ceiling or similar surface such that air circulation is restricted.							
b) Multicore Cables							
Cables spaced away from surfaces and supported on ladders, racks, etc. or suspended from a catenary wire, such that impedance to air flow around the cables is not greater than 10%.		2D 2D 4D 4D 4D					
Cables spaced away from surfaces and supported on perforated or unperforated trays such that air flow around the cables is partially restricted.		4D 4D					
Cables fixed directly to a wall, floor, ceiling or similar surface such that air circulation is restricted.							

Note: Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standards for full details.

SINGLE CORE CABLES IN PARALLEL

The following are the recommended arrangements of single core cables in parallel. Non-symmetrical arrangements result in different impedances and hence unequal current sharing between parallel legs of the same phase. This should be avoided as it could lead to overheating of some cables.

Neutral conductors of Three phase circuits should be located so as not to disturb the symmetry of the groups.

Figure 2.3 Arrangements for Equal Current Sharing of Single Core **Cables in Parallel** Single Phase **Three Phase** Two Conductors В С С в А А per Phase or в в А в А С в С or Three Not Recommended Conductors per Phase Four Conductors С в в С per Phase В (A) В Α в в А А С в в С or or в в в

RATING FACTORS

Table 2.1 Bunched Circuits of Single Core or Multicore Cables in Air or in Wiring Enclosures

No of Arrangement of Cables							
Circuits ¹	Bunched in Air	Bunched on a Surface or	Single	e Layer or Floor	Single Layer under a Ceiling		
		Enclosed	Touching	Spaced ^{2,3}	Touching	Spaced ^{2,3}	
1	1.00	1.00	1.00	1.00	0.95	0.95	
2	0.87	0.80	0.85	0.94	0.81	0.85	
3	0.75	0.70	0.79	0.90	0.72	0.85	
4	0.72	0.65	0.75	0.90	0.68	0.85	
5	0.70	0.60	0.73	0.90	0.66	0.85	
6	0.67	0.57	0.72	0.90	0.64	0.85	
7	-	0.54	0.72	0.90	0.63	0.85	
8	-	0.52	0.71	0.90	0.62	0.85	
9	-	0.50	0.70	0.90	0.61	0.85	
10	-	0.48	0.70	0.90	0.61	0.85	
12	-	0.45	0.70	0.90	0.61	0.85	
14	-	0.43	0.70	0.90	0.61	0.85	
16	-	0.41	0.70	0.90	0.61	0.85	
18	-	0.39	0.70	0.90	0.61	0.85	
20 or more	-	0.38	0.70	0.90	0.61	0.85	

Notes:

1. Where a bunch of cables consist of n loaded conductors, it may be considered as n/2 circuits of two loaded conductors or n/3 circuits of three loaded conductors.

2. Spaced refers to a clearance of one cable diameter between adjacent cables.

3. Refer to Figure 2.2 for spacings which avoid derating.

RATING FACTORS (CONT.)

Table 2.2 Cables on Trays, Racks or Other Supports													
Type of	Sing	gle Core				Multicore Cables							
Support	Arrangement	No. of Trays		of Circ ray or		Arrangement No. of Trays No of Cables ¹ per Tray or Ra					or Ra	ck	
		or Racks	1	2	3		or Racks	1	2	3	4	6	9
Unperfor		1	0.95	0.85	0.84	\bigcirc	1	0.97	0.85	0.78	0.75	0.71	0.68
-ated		2	0.92	0.83	0.79		2	0.97	0.84	0.76	0.73	0.68	0.63
Trays ²		3	0.91	0.82	0.76		3	0.97	0.83	0.75	0.72	0.66	0.61
		1	0.98	0.96	0.94		1	0.97	0.96	0.94	0.93	0.90	-
		2	0.95	0.91	0.87		2	0.97	0.95	0.92	0.90	0.86	-
		3	0.94	0.90	0.85		3	0.97	0.94	0.91	0.89	0.84	-
Perforated	L000000J	1	0.97	0.89	0.87	$\mathcal{O}\mathcal{O}$	1	1.0	0.88	0.82	0.78	0.76	0.73
Trays ²		2	0.94	0.85	0.81		2	1.0	0.87	0.80	0.76	0.73	0.68
		3	0.93	0.84	0.79		3	1.0	0.86	0.79	0.75	0.71	0.66
		1	1.0	0.98	0.96		1	1.0	1.0	0.98	0.95	0.91	-
		2	0.97	0.93	0.89		2	1.0	0.99	0.96	0.92	0.87	-
		3	0.96	0.92	0.86		3	1.0	0.98	0.95	0.91	0.85	-
Vertical	л г С г	1	0.94	0.85	-		1	1.0	0.88	0.82	0.77	0.73	0.72
Perforated Trays ³	L_000	2	0.92	0.83	-		2	1.0	0.88	0.81	0.76	0.72	0.70
		1	1.0	0.91	0.89	8	1	1.0	0.91	0.89	0.88	0.87	-
	¢d⊺bo	2	1.0	0.90	0.86		2	1.0	0.91	0.88	0.87	0.86	-
Ladder		1	1.0	0.95	0.94		1	1.0	0.87	0.82	0.80	0.79	0.78
Racks,		2	0.95	0.90	0.88		2	1.0	0.86	0.80	0.78	0.76	0.73
Cleats		3	0.95	0.89	0.85		3	1.0	0.85	0.79	0.76	0.73	0.70
etc ²		1	1.0	1.0	1.0		1	1.0	1.0	1.0	1.0	1.0	-
		2	0.97	0.95	0.93		2	1.0	0.99	0.98	0.97	0.96	-
		3	0.97	0.94	0.90		3	1.0	0.98	0.97	0.96	0.93	-

The factors are to be applied to "spaced from surface in air" current ratings.

Notes:

1. The factors given apply to circuits consisting of groups of two or three loaded single core cables or multicore cables having two or three loaded conductors.

2. Trays or ladder type supports shall have a vertical spacing of not less than 300 mm.

3. Back to back vertical trays shall have a horizontal spacing of not less than 230 mm.

4. Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standards for full details.

BENDING RADII AND DUCT SIZES

Recommended Bending Radius Factors

The safe bending radius for an electric cable is limited by the flexibility of its insulation and sheathing material. When a cable is being installed it may be pulled around several curves in different directions and subjected to dynamic stresses which could cause damage. Consequently the bending radius around which a cable may be pulled is greater than that into which it can be set in its final position.

The following recommended minimum bending radii are expressed as a function of the cable diameter and refer to the inside of the curve. In all cases, bending radii should be as large as practicable.

Recommended Minimum Bending Radii

Recommended within Denang Radi						
Cable Type (choose th	Cable Type (choose the highest value of all relevant construction features) During Installation (F) Set (F)					
All Cable Types	Nylon Covered	30	20			
	HDPE Sheath	25	15			
	Helical Copper or Brass taped	18	12			
	Steel Wire Armoured	18	12			
	Solid Aluminium Conductors	12	8			
	Compacted or Shaped Stranded Conductors	12	8			
MV XLPE Cables	Single Core and Multicore Cables	18	12			
LV (0.6/1 kV) Cables	PVC/XLPE Insulation	9	6			

Minimum Bending Radius

R = F * D where, R = Bending Radius (mm), D = Cable Diameter (mm), and F = Factor from above table.

Duct Sizes

Ducts are another important consideration affecting the pulling operation. Selection of the appropriate duct should be based on internal duct diameter to suit a cable size and wall thickness to prevent deformation during duct installation. The internal finish of the installed ducting should be smooth to prevent cable sheath damage during installation. During cable installation the use of graphite or other commercially available pulling lubricants can also prevent sheath damage and reduce pulling tensions. The following duct sizes are recommended:

Duct Selection						
Heavy Duty Rigid PVC Conduit		Cable Diameter				
Nominal Size (mm)	Single Cable (mm)	Three Cables (mm)	Four Cables (mm)			
50	Up to 30	-	-			
63	30 to 38	-	-			
65	38 to 47	Up to 24	Up to 21			
80	47 to 52	24 to 27	21 to 23			
100	52 to 69	27 to 35	23 to 31			
150	69 to 99	35 to 51	31 to 44			
200	99 to 142	51 to 73	44 to 63			
250	Above 142	Above 73	Above 63			

PULLING TENSION

Where a cable is to be pulled in using a winch and steel wire rope, the rope may be secured to the cable by any of the following:

- 1. A cable stocking of steel wire braid
- 2. A pulling eye attached to the cable conductor
- 3. A pulling eye over the complete cable end
- 4. A pulling eye formed from the armour wires

The maximum tension which may be used is limited by the tensile strength of the conductors or armour wires, or by the gripping capability of the cable stocking, depending on the method used.

Stress Limits for Cable Materials

Material	Maximum Safe Tensile Stress (S) kN/mm ²					
Stranded Copper Conductor	0.07					
Stranded Aluminium Conductor	0.05					
Solid Aluminium Conductor	0.03					
Galvanised Mild Steel Armour	0.13					
Aluminium Wire Armour	0.04					

Method of Calculation

Using values of S from table above :

Limited by Conductor

 $T_C = N * A_C * S$

Where T_{C} = Maximum Pulling Tension (kN), N = No. of Conductors, A_{C} = Cross-sectional Area of one Conductor (mm²),

and **S** = Maximum Safe Tensile Stress for Conductor (kN/mm²).

Limited by Armour

 $T_a = 2.47 * d_a * (D_a + d_a) * S$

Where T_a = Maximum Pulling Tension (kN), S = Maximum Safe Tensile Stress for Armour (kN/mm²), d_a = Nominal Diameter of Armour Wire (mm), and D_a = Nominal Diameter under Armour (mm).

Limited by Stocking

 $T_{S} = 0.120 * D$

Where T_S = Maximum Pulling Tension (kN), and D = the Overall Diameter of the Cable (mm).

Overall Limiting Tension							
Cable OD (mm)	Maximum Pulling Tension (kN)						
0 to 15	5						
15 to 25	10						
25 to 50	15						
50 and over	20						

The safe pulling tension is the smallest of the calculated values.

SHORT CIRCUIT RATINGS

The short circuit capacity of a current carrying component of a cable is determined by the following factors: 1. The temperature prior to the short circuit, generally taken to be that corresponding with the maximum conductor operating temperature under normal conditions.

2. The energy produced by the short circuit, a function of both the magnitude and the duration of the current.

3. The limiting final temperature, generally determined by all materials in contact with the conducting component.

The adiabatic (no heat loss) equation for the temperature rise during a short circuit is as follows:

 $I^2 * t = k^2 * S^2$

Where I = Short Circuit Current {r.m.s. over duration} (A.), t = Duration of Short Circuit (s), k = Constant depending on the material and the initial and final temperatures, and S = Cross-sectional Area of Current Carrying Component (mm^2). Rearrangement of the general equation gives the formulae for I_{SC} , the Short Circuit Rating for a particular Conductor Size, and for calculation of S_{C} , the Minimum Conductor Size to meet a specified short circuit level.

$$I_{SC} = \frac{k^*S}{\sqrt{t}}(A)$$
$$S_C = \frac{l^*\sqrt{t}}{k}(mm^2)$$

(Round up to the nearest standard conductor size.)

Values of **k** for Copper and Aluminium conductors and PVC and XLPE insulation materials, based on initial temperatures corresponding to the maximum continuous conductor operating temperatures are as follows:

Values of k for Cu and Al Conductors with PVC or XLPE Insulation										
Insulation Type Copper Conductor Aluminium Conductor										
Up to 300 mm ²		Over 300 mm ²	Up to 300 mm ²	Over 300 mm ²						
PVC [∗]	111	98.7	73.6	65.3						
XLPE [#]	143	143	94.5	94.5						

* Insulation material temperature limits for PVC of 75°C to 160°C up to 300 mm² and 75°C to 140°C above 300 mm² apply.

Insulation material temperature limits for XLPE of 90°C to 250°C apply.

These values are based on the limits imposed by the insulation material alone. Note that soldered joints impose an upper temperature limit of 160°C, while for mechanical (bolted) joints the manufacturer's recommendations should be observed. The above temperature limits are appropriate for durations of up to 5 seconds only.

One Second Short Circuit Ratings

In practice it is often convenient to work with short circuit ratings converted to a one second basis. Reference may then be made to Table 2.3 which gives one second short circuit ratings for Copper and Aluminium conductors with PVC and XLPE insulation materials respectively.

To convert a one second rating to a rating for t seconds, divide by \sqrt{t} , eg, 34 kA for 1s equals 20 kA for 3 s.

To convert a t second rating to a one second rating, multiply by \sqrt{t} , eg, 10 kA for 0.04s equals 2 kA for 1 s.

Other Considerations

In addition to the temperature rise, consideration should also be given to the thermomechanical (longitudinal) and electromechanical (lateral) forces which can be generated under short circuit conditions.

CONDUCTOR SHORT CIRCUIT RATINGS

Table 2.3 Conductor Short Circuit Ratings (kA) for 1s Duration

	Conductor Size Copper Conductors Aluminium Conductors										
Conductor Size											
(mm ²⁾	PVC Insulation	XLPE Insulation	PVC Insulation	XLPE Insulation							
1	0.111	0.143	-	-							
1.5	0.167	0.215	-	-							
2.5	0.278	0.358	-	-							
4	0.444	0.572	-	-							
6	0.666	0.858	-	-							
10	1.11	1.43	-	-							
16	1.78	2.29	1.18	1.51							
25	2.78	3.58	1.84	2.36							
35	3.89	5.01	2.58	3.31							
50	5.55	7.15	3.68	4.73							
70	7.77	10.0	5.15	6.62							
95	10.5	13.6	6.99	8.98							
120	13.3	17.2	8.83	11.3							
150	16.7	21.5	11.0	14.2							
185	20.5	26.5	13.6	17.5							
240	26.6	34.3	17.7	22.7							
300	33.3	42.9	22.1	28.4							
400	39.5	57.2	26.1	37.8							
500	49.4	71.5	32.7	47.3							
630	62.2	90.1	41.1	59.5							
800	-	-	-	75.6							

Note:

1. Short circuit ratings for durations other than one second may be obtained by dividing the one second ratings by \sqrt{t} , where t is the required duration in seconds.

CONDUCTOR MAX DC RESISTANCES

Table 2.4 Conductor Maximum DC Resistances at 20°C (Ω /km)

Conductor Size (mm ²)	Plain Annealed Copper	Tinned Annealed Copper	Aluminium
1	18.1	18.2	-
1.5	13.6	13.8	-
2.5	7.41	7.56	-
4	4.61	4.70	-
6	3.08	3.11	-
10	1.83	1.84	-
16	1.15	1.16	1.91
25	0.727	0.734	1.20
35	0.524	0.529	0.868
50	0.387	0.391	0.641
70	0.268	0.270	0.443
95	0.193	0.195	0.320
120	0.153	0.154	0.253
150	0.124	0.126	0.206
185	0.0991	0.100	0.164
240	0.0754	0.0762	0.125
300	0.0601	0.0607	0.100
400	0.0470	0.0475	0.0778
500 *	0.0366	0.0369	0.0605
630 *	0.0283	0.0286	0.0469
800	-	-	0.0367

Notes:

1. Content from AS/NZS 1125:2001 has been reproduced with the permission from Standards New Zealand under

Copyright Licence 000926. Please see the Standards for full details.

2. Values for hard drawn plain or hard drawn tinned copper conductors may be obtained by **dividing** the values for annealed conductors by 0.97.

3. The above values are for Class 2 stranded conductors except for 1 mm² which is Class 1.

4. Conductor sizes marked with an * are for single core cables only. For multi core cables multiply value by 1.02.

CONDUCTOR DIMENSIONS

Table 2.5 Copper Conductor Dimensions										
Nominal Cross	Circular Nominal	Compacted	Compacted Three Core, 120° Sectored		Four Core, 90°	Sectored				
Sectional Area	Diameter	Minimum Diameter	Nominal Depth	Max Width	Nominal Depth	Max Width				
(mm²)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)				
16	4.95	4.85	-	-	-	-				
25	6.30	5.99	5.22	8.48	5.87	7.68				
35	7.55	7.00	5.97	9.85	6.91	9.20				
50	8.75	8.30	7.02	11.51	7.97	10.50				
70	10.50	9.69	8.50	14.40	9.37	13.09				
95	12.40	11.40	10.02	17.00	10.97	15.55				
120	14.10	12.81	11.22	18.90	12.25	17.10				
150	15.55	14.22	12.17	20.90	13.62	18.92				
185	17.40	15.97	13.65	23.10	15.37	21.30				
240	20.00	18.25	15.57	26.75	17.48	24.50				
300	22.35	20.47	17.67	29.85	19.57	27.60				
400	25.25	23.40	19.84	33.96	22.29	31.21				
500	28.30	26.76	-	-	-	-				
630	-	30.44	-	-	-	-				

Table 2.6 Aluminium Conductor Dimensions

Nominal Cross	Circular Nominal	Compacted	Three Core, 12	0° Sectored	Four Core, 90°	Sectored
Sectional Area	Diameter	Minimum Diameter	Nominal Depth	Max Width	Nominal Depth	Max Width
(mm²)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
16	5.15	-	-	-	-	-
25	6.30	5.99	5.22	8.48	5.87	7.68
35	7.60	6.95	5.97	9.85	6.91	9.20
50	8.80	8.20	7.02	11.51	7.97	10.50
70	10.45	9.69	8.50	14.40	9.37	13.09
95	12.40	11.40	10.02	17.00	10.97	15.55
120	14.15	12.81	11.22	18.90	12.25	17.10
150	15.60	14.22	12.17	20.90	13.62	18.92
185	17.35	15.97	13.65	23.10	15.17	21.30
240	20.25	18.32	15.57	26.75	17.48	24.50
300	22.50	20.33	17.67	29.85	19.57	27.60
400	25.40	23.06	19.84	33.96	22.29	31.21
500	28.55	26.10	-	-	-	-
630	-	29.70	-	-	-	-
800	-	34.30	-	-	-	-

Note:

1. Lugs and links **must always** be selected to match the nominal cross sectional area of the conductor. A lug or link for a 185 mm² circular conductor may fit on a 240 mm² compacted conductor but may not be rated to carry the load current associated with the larger conductor size; nor will it compress correctly if it is of the compression type.

WIRE AND CABLE SIZE COMPARISON

British Imperial		Equivalent Metric	Metric Size	American Wire
Number/Diameter of Wires Nº/inch	Nominal C/S Area sq inch	C/S Area mm ²	mm²	Gauge AWG
		0.205		24
		0.324	0.22	22
		0.324	0.35	22
			0.5	
		0.519		20
		0.826	0.75	18
1/0.044	0.0015	0.820		10
1/0.011	0.0010	0.77	1	
3/0.029	0.0019	1.25		
		1.31	15	16
3/0.036	0.003	1.93	1.5	
5/0.030	0.003	2.08		14
		2.00	2.5	
7/0.029	0.0045	2.93		
		3.31		12
7/0.036	0.007	4.52	4	
//0.030	0.007	5.26		10
		5.20	6	10
		6.63		9
7/0.044	0.010	6.75		
7/0.050	0.014/	8.37		8
7/0.052	0.0146	9.43	10	
		10.6	10	7
		13.3		6
7/0.064	0.0225	14.3		
		16.8	1/	5
19/0.044	0.03	18.3	16	
17/0.044	0.05	21.1		4
			25	
19/0.052	0.04	25.5		
		26.7		3 2
		33.6	35	2
19/0.064	0.06	38.7	55	
		42.4		1
			50	
10/0 000	0.10	53.5		1/0
19/0.083	0.10	65.1 67.4		2/0
		07.4	70	210
37/0.064	0.12	75.3		
		85.0		3/0
27/0 072	0.15	05.2	95	
37/0.072	0.15	95.3 107		4/0
		107	120	4/0
37/0.083	0.20	127		

Table continued on next page.

WIRE AND CABLE SIZE COMPARISON (CONTINUED)

British Imperial		Equivalent Metric	Metric Size	American Wire
Number/Diameter of	Nominal C/S Area	C/S Area		Gauge
Wires	sq inch	mm²	mm²	kcmil
Nº/inch				
			120	
37/0.083	0.20	127		
		127		250
			150	
		152		300
37/0.093	0.25	159		
		177		350
			185	
37/0.103	0.30	195		
		203		400
		228		450
			240	
		253		500
61/0.093	0.40	262		
		279	000	550
		0.01	300	(00
(1)0 100	0.50	304		600
61/0.103	0.50	322		(50
		329		650
		355		700
01/0.000	0.40	380		750
91/0.093	0.60	391	100	000
		405	400	800
		405		800
01/0 100	0.75	456		900
91/0.103	0.75	480	500	
		507	500	1000
		507	(20	1000
107/0 100	1.00	((0	630	
127/0.103	1.00	669		

NOTES

SECTION THREE - LOW VOLTAGE CABLES

	PAGE
Notes	3
Explanatory Information	4-10
Construction	4
Current Ratings	5
Rating Factors	6
Voltage Drops	8
Selection Procedures	10
Minimum Copper Earthing Conductor Size	11
Product Sheets	12-75
Conduit Wires	12
Single Core Cu TPS Cables	14
Two Core Cu TPS Cables	16
Two Core & Earth Cu TPS Cables	18
Three Core Cu TPS Cables	20
Three Core & Earth Cu TPS Cables	22
Four Core Cu TPS Cables	24
Single Core Cu PVC Neutral Screen Cables	26
Two Core Cu PVC Neutral Screen Cables	28
Three Core Cu PVC Neutral Screen Cables	30
Four Core Cu PVC Neutral Screen Cables	32
Three Core Cu XLPE Neutral Screen Cables	34
Four Core Cu XLPE Neutral Screen Cables	36
Single Core AI XLPE Neutral Screen Cables	38
Three Core AI XLPE Neutral Screen Cables	40
Single Core Cu Vintol Cables	42
Single Core Al Vintol Cables	44
Single Core Cu Cantol Cables	46
Single Core Al Cantol Cables	48
Two Core & Earth Cu Remolex Cables	50
Three Core & Earth Cu Remolex Cables	52
Four Core & Earth Cu Remolex Cables	54
Three Core & Earth Cu Cempex Cables	56
Four Core & Earth Cu Cempex Cables	58
Two Core Cu PVC Armoured Mains Cables	60
Three Core Cu PVC Armoured Mains Cables	62
Four Core Cu PVC Armoured Mains Cables	64
Four Core Cu XLPE Armoured Mains Cables	66
Multicore Control Cables	68
Multicore Armoured Control Cables	70
Varolex Cables	72
Four Core AI XLPE URD Cables	74

Section 3, Page 2

SECTION THREE – LOW VOLTAGE CABLES

Tabulated Electrical Data76-112Current Ratings76Voltage Drops92AC Resistances94Reactances96Voltage Drop Graphs98

NOTES

CONSTRUCTION

Nexans Olex low voltage cables are designed in accordance with relevant New Zealand, Australian or British Standards and specific customer requirements (where applicable) to provide optimum performance for the end application.

The standards referred to for PVC insulation are: AS/NZS 4961 AS/NZS 5000.1 AS/NZS 5000.2 BS 6346 The standards referred to for XLPE insulation are: AS/NZS 5000.1 AS/NZS 4026 AS/NZS 4961 © Convright Standards New Zealand 2012, Control

© Copyright Standards New Zealand 2012. Content from <AS/NZS 3008.1.2:2010 Electrical installations – Selection of cables – Cables for alternating voltages up to and including 0.6/1kV – Typical New Zealand Conditions> or <AS/NZS 1125:2001 Conductors in insulated electric cables and flexible cords> and has been reproduced or adapted with permission from Standards New Zealand under Copyright Licence 000926. Please refer to the complete Standard for full details available for purchase from www.standards.co.nz.

Component Detail

Conductor

Conductors are made from either plain or tinned copper or solid or stranded aluminium. Depending on the cable construction, conductors may be either circular, compacted or shaped.

Conductor Data										
Cross Sectional Area	1.5	2.5	4	6	10	16	25	35		
Nominal Diameter and No. of Wires	3/0.75	7/0.67	7/0.85	7/1.04	7/1.35	7/1.70	7/2.14	19/1.53		

Insulation

The insulation materials used are as follows:

1. PVC (Polyvinyl Chloride), meeting the requirements of: V-75 (AS/NZS 3808), V-90 (AS/NZS 3808), and TI1 (BS EN 50363-3.).

2. XLPE (Cross-linked Polyethylene), meeting the requirements of: X-90 (AS/NZS 3808, AS 3560) and GP8 (BS 7655: Section 1.3.).

Core Assembly

The cores of cables having flat profiles are laid side by side during the subsequent process. In circular cables, the cores are laid up and the interstices filled with a non-hygroscopic material where necessary to achieve a circular cable cross-section. The laid up core assembly may be bound with helically applied non-hygroscopic tapes.

Neutral Screen

In neutral screened cables, a screen of plain annealed copper or tinned annealed copper wires is helically applied over the core of a single core cable or the core assembly of a multicore cable.

Bedding and Armour (Multicore cables)

In multicore armoured cables, a bedding of PVC is extruded over the core assembly followed by a layer of helically applied galvanised mild steel wires.

Outer Sheath

A sheath of PVC with suitable temperature rating is extruded over the underlying components. Additional protective coverings may be applied depending on the environment in which the cable is installed, eg, a nylon oversheath and an additional sacrificial PVC layer are often specified for protection against termite attack.

CURRENT RATINGS

The current carrying capacity of a cable is determined by the following factors:

1. Current flowing in a conductor generates heat and causes the conductor temperature to rise above the ambient temperature.

2. Different methods of installation or the presence of external heat sources such as adjacent cables vary the rate of heat dissipation.

3. The insulation material determines the maximum conductor temperature which can be sustained continuously over the expected life of the cable.

In all cases, the ratings given are the single circuit ratings, corresponding to continuous loading at the maximum conductor temperature appropriate to the insulation material.

Environmental Conditions

The current ratings are based on the following operational conditions: ambient air temperature of 30°C, soil temperature of 15°C, soil thermal resistivity of 1.2 K.m/W and depth of burial of 0.5 m. Where conditions vary from those on which the ratings are based, appropriate rating factors from Tables 3.1 to 3.4 need to be applied.

Methods of Installation

The methods of installation for which the ratings are applicable are shown graphically in Figure 2.1 (Section 2 General Technical Information). Arrangements which are shown one above the other for the same installation method are deemed to have the same current carrying capacity.

Earthing conductors and lightly loaded neutral conductors of three phase circuits are ignored for current rating purposes and are generally not shown in the graphical representations of the cable and installation methods. Thus, where two single core cables or a two core cable is shown the current rating applies to single phase operation; where three single core cables or a three core cable is shown the current rating applies to two or three phase operation.

Groups of Circuits

For groups of circuits unenclosed in air, the spacings and arrangements which need to be maintained to prevent derating are given in Figure 2.2 (Section 2 General Technical Information). Where underground circuits are spaced by more than 2 m from adjacent circuits, no derating applies. Also, if adjacent circuits are operated at less than 35% of their current carrying capacity they may be excluded from considerations as their contribution to mutual heating will be small.

Where a number of circuits are installed in close proximity in such a way that they are not thermally independent, the appropriate rating factors from Tables 3.5, 3.6, (Section 3 Low Voltage \geq 0.6/1 kV Cables) and Tables 2.1, 2.2 (Section 2 General Technical Information) need to be applied.

Cables in Parallel

For cables operated in parallel, each parallel leg is regarded as a separate circuit for current rating purposes and the appropriate rating factors for grouping are applicable. Refer also to Figure 2.3 (Section 2 General Technical Information) for the arrangements of single core cables so as to ensure equal current sharing between parallel legs of the same phase.

Solar Radiation

For cables exposed to direct sunlight, the effect of solar radiation is to increase the surface temperature of the cable and hence limit the temperature rise due to the load in the conductors. Where possible, cables should be shielded from the direct rays of the sun without restricting ventilation. Otherwise, the effect of solar radiation should be taken into account, either by calculation in accordance with IEC 60287, or as an approximation by adding 20°C to the ambient air temperature and applying the appropriate rating factor.

LOW VOLTAGE RATING FACTORS

Table 3.1 Ambient Air Temperature Variation

Insulation Type		Air Temperature (°C)							
	15	15 20 25 30 35 40 45 50 55							
PVC	1.18	1.12	1.06	1.00	0.94	0.88	0.80	0.72	0.63
XLPE	1.15	1.09	1.05	1.00	0.95	0.91	0.85	0.80	0.74

Note: Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Table 3.2 Soil Temperature Variation

Insulation Type		Soil Temperature (°C)							
	10	10 15 20 25 30 35 40							
PVC	1.04	1.00	0.95	0.91	0.86	0.81	0.75		
XLPE	1.04	1.00	0.96	0.93	0.91	0.87	0.83		

Note: Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Table 3.3 Depth of Burial Variation

Depth of Burial		Laid Direct		In Undergro	ound Ducts			
	Up to 50mm ²	Above 50mm ² Up to 300mm ²	Above 50mm ² Up to 300mm ² Above 300mm ²		Multicore			
0.5	1.00	1.00	1.00	1.00	1.00			
0.6	0.99	0.98	0.97	0.98	0.99			
0.8	0.97	0.96	0.94	0.95	0.97			
1.0	0.95	0.94	0.92	0.93	0.96			
1.25	0.94	0.92	0.90	0.90	0.95			
1.5	0.93	0.91	0.89	0.89	0.94			
1.75	0.92	0.89	0.87	0.88	0.94			
2.0	0.91	0.88	0.86	0.87	0.93			
2.5	0.90	0.87	0.85	0.86	0.93			
3.0 (or deeper)	0.89	0.86	0.83	0.85	0.92			

Note: Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Table 3.4	Table 3.4 Soil Thermal Resistivity Variation										
Soil Thermal Resistivity		THE STATE									
(K.m/W)											
0.8	1.09	1.16	1.03	1.06	1.08						
0.9	1.07	1.11	1.02	1.04	1.06						
1.0	1.04	1.07	1.02	1.03	1.04						
1.2	1.00	1.00	1.00	1.00	1.00						
1.5	0.92	0.90	0.95	0.94	0.92						
2.0	0.81	0.80	0.88	0.86	0.83						
2.5	0.74	0.72	0.83	0.80	0.77						
3.0	0.69	0.66	0.78	0.75	0.71						

Note: Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

LOW VOLTAGE RATING FACTORS

Table	Table 3.5 Groups of Circuits Laid Direct												
No. of	Single Core Cables							Multic	ore Cabl	es			
Circuits	spacing							spacing -					
	Touc	hing		Spaci	ng (m)		Touching		Spaci	ng (m)			
	Trefoil	Flat	0.15	0.30	0.45	0.60		0.15	0.30	0.45	0.60		
2	0.78	0.81	0.83	0.88	0.91	0.93	0.81	0.87	0.91	0.93	0.95		
3	0.66	0.70	0.73	0.79	0.84	0.87	0.70	0.78	0.84	0.88	0.90		
4	0.61	0.64	0.68	0.74	0.81	0.85	0.63	0.74	0.81	0.86	0.89		
5	0.56	0.60	0.64	0.73	0.79	0.83	0.59	0.70	0.78	0.84	0.87		
6	0.53	0.57	0.61	0.71	0.78	0.82	0.55	0.68	0.77	0.83	0.87		
7	0.50	0.54	0.59	0.69	0.76	0.82	0.52	0.66	0.75	0.82	0.86		
8	0.49	0.53	0.57	0.68	0.76	0.81	0.50	0.64	0.75	0.81	0.86		
9	0.47	0.51	0.56	0.67	0.75	0.81	0.48	0.63	0.74	0.81	0.85		
10	0.46	0.50	0.55	0.67	0.75	0.80	0.47	0.62	0.73	0.80	0.85		
11	0.44	0.49	0.54	0.66	0.74	0.80	0.45	0.61	0.73	0.80	0.85		
12	0.43	0.48	0.53	0.66	0.74	0.80	0.44	0.60	0.72	0.80	0.84		

Note: Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Table	Table 3.6 Groups of Circuits In Underground Ducts											
No. of Circuits		le Core Cables Iticore Cables			Single Cor	e Cables in Sing	le-way Ducts					
	Touching	Spacing (m) Touchin		Touching	Spac	ing (m)						
		0.30	0.45	0.60		0.45	0.60					
2	0.90	0.93	0.95	0.96	0.87	0.91	0.93					
3	0.83	0.88	0.91	0.93	0.78	0.84	0.87					
4	0.79	0.85	0.89	0.92	0.74	0.81	0.85					
5	0.75	0.83	0.88	0.91	0.70	0.79	0.83					
6	0.73	0.82	0.87	0.90	0.69	0.78	0.82					
7	0.71	0.81	0.86	0.89	0.67	0.76	0.82					
8	0.70	0.80	0.85	0.89	0.66	0.76	0.81					
9	0.68	0.79	0.85	0.89	0.65	0.75	0.81					
10	0.67	0.79	0.85	0.89	0.64	0.75	0.80					
11	0.66	0.78	0.84	0.88	0.63	0.74	0.80					
12	0.66	0.78	0.84	0.88	0.63	0.74	0.80					

Note: Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

VOLTAGE DROPS

In order to ensure satisfactory operation of electrical equipment, it is necessary to maintain the voltage at which it is supplied within certain limits.

Voltage Drop Limitations

In New Zealand, the nominal supply system is 230/400 volts. The maximum voltage drop from the point of supply to any point in the installation is required to be no more than 5% of the nominal supply voltage, ie, 11.5 V for 230 V phase to earth or 20 V for 400 V phase to phase.

The voltage drop limitation applying to a circuit needs to be assessed taking account of the function of the circuit and its relationship with other circuits. For example, other voltage drop limits may apply in ELV circuits or may be dictated by motor starting considerations.

Also, the voltage drop in mains and submains circuits should take account of the voltage drop in final sub-circuits (and vice versa) to ensure the total voltage drop in the installation is within the required limits.

Use of Tabulated mV/A.m Figures

The voltage drop (mV/A.m) values given in this publication have been obtained from AS/NZS 3008.1.2. They represent the worst case conditions, whereby it is assumed that the cable is operating at maximum rated temperature and is supplying a load having a power factor equal to the power factor of the cable. For three phase circuits, balanced loading is assumed.

On this basis, where the cable size and type, load current and length of run are known, the voltage drop can be calculated from the following:

$$V_{d} = \frac{V_{t} * I * L}{1000} (V)$$

where: V_t = the Tabulated Voltage Drop Figure for the Cable (mV/A.m), I = the Load Current (A), and L = the Length of Run (m).

This formula is used to calculate the voltage drop in a circuit when the cable size is known.

Rearrangement of this equation gives the maximum mV/A.m value for compliance with a specific voltage drop.

$$V_{\rm C} = \frac{1000 * V_{\rm d}}{I * L} ({\rm mV/A.m})$$

This formula should be used to select the cable size necessary to meet a specific voltage drop limitation. The size selected should have a tabulated mV/A.m figure not greater than the calculated value of V_{C} .

Unbalanced Three Phase Circuits

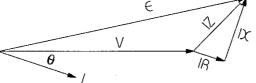
In many three phase circuits the loading on each phase is not equal. In these cases, current will flow in the neutral conductor and the tabulated three phase mV/A.m values will not strictly apply.

Where the imbalance is known to be small, a conservative method of voltage drop assessment is to assume balanced three phase load conditions but use the current flowing in the most heavily loaded phase.

However, where the imbalance is significant, or not readily determined, it may be necessary to revert to a single phase basis. The single phase voltage drop limit and the tabulated single phase mV/A.m should be used unless more precise calculations are performed using vector methods to calculate the neutral current and then geometrically summing the voltage drops in the phase and neutral conductors.

Voltage Drop Graphs

For quick calculations, Voltage Drop Graphs are also available for cables normally available ex stock from Nexans Olex.


= E - V, IZ = Voltage Drop

VOLTAGE DROPS

Instances can arise where it is desired to make a more precise determination than would arise from the use of tabulated mV/A.m figures. The following methods can be used in these cases.

Phasor Diagram

The relationships between the various current and voltage elements in a cable circuit are shown in the following phasor diagram (lagging power fr

where: I = Current Flowing in C

associated with Cable Impedance, and $\cos \theta$ = Power Factor of Load.

Given values for E, I, R, X and θ , the magnitude of V can be determined vectorially and subtracted from E to give the difference in voltage between the supply and load ends of the circuit. As the magnitude of the permissible voltage drop is very much smaller than the supply and load voltages, the difference between E and V is approximately equal to the magnitude of IZ. The following formulae make use of this simplification. For additional information refer to AS/NZS 3008.1.2.

Circuit Impedance and Load Power Factor

In the cases where the load power factor is not known, the load power factor is assumed to be equal to the cable power factor and the voltage drop calculated in terms of the cable impedance as follows:

 V_{d1f} = 2 * I * L * Z (V/m) Single phase

 $V_{d3f} = \sqrt{3} * I * L * Z$ (V/m) Three phase

where: I = Load Current (A), L = Length of Run (m), Z (Cable Impedance) = $\sqrt{R_c^2 + X_L^2}$ (Ω /m), R_c = Conductor Resistance (Ω /m), and X_L = Cable Inductive Reactance ((Ω /m) at operating temperature and frequency. (X_L = 0 for direct current operation) and values of R_c and X_L are given in Tables 3.25 to 3.28.

Where the load power factor $\cos \theta$ is known, the relevant formulae are:

 $V_{d1f} = 2 * I * L * (R_c * \cos \theta \pm X_L * \sin \theta)$ (V/m) $V_{d3f} = \sqrt{3} * I * L * (R_c * \cos \theta \pm X_L * \sin \theta)$ (V/m)

In these formulae, the second term in brackets is added for lagging power factors and subtracted for leading power factors. For unity power factor, sin θ = 0 so the second term disappears.

Cables Operated Below Full Load

In many situations, cables are operated at loads considerably less than their full rated current. The conductor temperature in such cases will be less than the maximum figure on which the tabulated mV/A.m values are based. For a given load current, the actual conductor temperature θ_0 (°C) can be calculated from the following:

$$\theta_0 = \theta_a + (\theta_r - \theta_a) x \left\{ \frac{I_o}{I_r} \right\}^2$$

where I_0 = Actual Load Current (A), I_r = Rated Current (A), θ_r = Rated Conductor Temperature (°C), and θ_a = Ambient Temperature (°C) corresponding to rated current.

The value of R_C to be used in the voltage drop calculations can then be obtained from Table 3.25 or 3.26 using the next higher value of conductor temperature.

Special computer programs are commercially available to calculate voltage drop allowing for cables that are not loaded at their full rated current.

SELECTION PROCEDURES

In accordance with AS/NZS 3008.1.2:2010 and AS/NZS 3000:2007, the four main factors which affect the minimum size of cable required for a particular installation are:

1. The cable current-carrying capacity, which is influenced by the cable materials and construction, the conditions of the cable environment and the method of installation due to their effects on the dissipation of heat from the conductors.

2. The voltage drop in the cable circuit, which is a function of load current, load power factor, and length of the cable run.

3. The temperature rise under short-circuit conditions, which is a function of both the magnitude and duration of the short-circuit current and is limited by the cable materials.

4. The maximum fault loop impedance which will still allow the protective device to trip within the specified time.

Procedures

To select the cable size required, based on the above considerations, follow the steps listed:

Current-Carrying Capacity

1. Determine the minimum current for which the cable is to be rated, taking account of the maximum demand of the circuit and the type and rating of the overcurrent protection device.

2. Ascertain how the cables are to be installed, and the conditions in the cable environment. From the tables of rating factors, select any rating factor(s) which are applicable.

3. Divide the rating from step 1. by the appropriate factor(s).

4. From the current rating tables, select a cable which, for the appropriate method of installation, has a tabulated rating not less than the value obtained from 3.

Voltage Drop

1. Determine the Load Current I (A) to be carried by the cable, and the Route Length L (m) of the circuit.

2. Establish the maximum voltage drop V_d (V) permitted in the circuit (taking account of any other voltage drops in series).

3. Evaluate the equation $Vc = \frac{1000 * Vd}{I*L}$ (mV/A.m). This value is the maximum mV/A.m figure which will give

the required voltage drop.

4. From the voltage drop tables, select a cable for the appropriate method of installation which has a tabulated mV/A.m figure not greater than this value.

Short Circuit Temperature

1. Determine the Maximum Duration t (s) and Magnitude I_{SC} (A) of the prospective Short Circuit Current.

2. Evaluate the equation $I_1 = I_{SC} * \sqrt{t}$ (A). This is the required short circuit rating converted to a one second basis.

3. From the conductor short-circuit ratings tables, select a cable with a rating not less than the value obtained from 2.

Fault Loop Impedance

1. Determine the maximum fault loop impedance which will still allow the protective device to trip within the specified time.

2. From the above calculate the maximum length of cable run to comply with the maximum fault loop impedance. Refer to AS/NZS 3000:2007, Clause 1.7.4.3 and Appendix B.

General

For any circuit, the cable size selected should not be less than the largest of the sizes calculated to meet the above limitations (this is the smallest size which will meet all of the requirements).

In practice, the current-carrying capacity will be found to prevail in short-run/high-current circuits while voltage drop considerations will usually prevail in long-run/low-current circuits. It is unusual for short-circuit temperature requirements to determine the conductor size required for low voltage cable circuits.

MINIMUM COPPER EARTHING CONDUCTOR SIZE

	NOMINAL SI COPPER EAI CONDUCTOI	RTHING
Nominal Size of Active Conductor	With Copper Active Conductors	With Aluminium Active Conductors
mm ²	mm ²	mm ²
1	1 *	-
1.5	1.5 *	-
2.5	2.5	-
4	2.5	-
6	2.5	2.5
10	4	2.5
16	6	4
25	6	6
35	10	6
50	16	10
70	25	10
95	25	16
120	35	25
150	50	25
185	70	35
240	95	50
300	120	70
400	≥120†	≥95†
500	≥120†	≥95†
630	≥120†	≥120†

* These earthing conductors may be used only where incorporated in a multicore cable or flexible cord, other than a lift travelling cable, in accordance with Clause 5.3.3.4 (b) and (c) of AS/NZS 3000:2007.

† A larger earthing conductor may be required to satisfy Clause 5.3.3.1.1 of AS/NZS 3000:2007.

Disclaimer

Nexans Olex has taken every precaution to ensure that the information contained in the above table is in line with the requirements of the appropriate New Zealand Standards and correct electrical practice. However, we accept no liability of any kind with respect to the information presented here.

It is the responsibility of the Electrician signing the Certificate of Compliance to ensure that all the requirements of the Wiring Regulations are met.

CONDUIT WIRES

Circular construction Copper conductor PVC insulation

roduct Sheet N	lo. 010-01 A								
Conductor Size	Thickness of Insulation	Nominal Overall Diameter	Linear Mass						
(mm²)	(mm)	(mm)	(kg/m)						
V90 Insulation									
1.0*	0.8	2.8	0.017						
1.5	0.8	3.3	0.022						
2.5	0.8	3.8	0.034						
4	1.0	4.7	0.055						
	V75 Insul	ation							
6	1.0	5.3	0.076						
10	1.0	6.2	0.12						
16	1.0	7.2	0.18						
25	1.2	8.9	0.28						
35	1.2	10.1	0.38						
50	1.4	11.7	0.51						
70	1.4	13.5	0.72						
95	1.6	15.8	1.0						
120	1.6	17.5	1.2						
150	1.8	19.4	1.7						
	GN/YE Earthing	Conductors							
1.5	0.6	2.8	0.020						
2.5	0.7	3.6	0.032						
Issue: January 2012									
0.6/1 kV. Made to AS/NZS	5000.1								

* Solid conductor

Notes:

1. Conductors 1.5 mm^2 and above are circular stranded.

2. Standard colours: Red, White, Blue, Black, Green/Yellow (other colours can be supplied if required).

3. Subject to confirmation, similar cables can be manufactured to other specifications.

CONDUIT WIRES

Circular construction Copper conductor PVC insulation Current ratings (A) and voltage drops (mV/A.m)

Conductor Size			6	Ð
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)
1.0	15	51.6	14	44.7
1.5	21	33.0	17	28.6
2.5	27	18.0	24	15.6
4	36	11.2	32	9.71
6	47	7.50	40	6.49
10	62	4.46	54	3.86
16	80	2.81	71	2.43
25	107	1.78	92	1.54
35	128	1.29	114	1.12
50	157	0.963	136	0.834
70	194	0.680	173	0.589
95	242	0.507	209	0.439
120	276	0.415	247	0.359
150	321	0.352	278	0.305

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

The values in this table are for typical New Zealand installation conditions of:-Ambient Air Temperature 30°C

SINGLE CORE CU TPS CABLES

Circular construction Copper conductor PVC insulation PVC sheath

Product Sh	Product Sheet No. 020-01 A										
Conductor Size	Thickness of Insulation	Thickness of Sheath	Nominal Overall Diameter	Linear Mass							
(mm2)	(mm)	(mm)	(mm)	(kg/m)							
1.0*	0.6	0.8	3.8	0.026							
1.5#	0.6	0.8	4.3	0.034							
2.5	0.7	0.8	4.9	0.048							
4	0.8	0.9	6.0	0.073							
6	0.8	0.9	6.5	0.096							
10	1.0	0.9	7.8	0.15							
16	1.0	1.0	9.3	0.22							
Issue: January 2	2012	·									
450/750 V. Made	e to AS/NZS 5000.2										

* Solid conductor

#3 wire conductor

Notes:

1. Conductors 2.5 mm² and above are circular stranded.

2. Standard colours: Insulation - Red or Black; Sheath - White. Other colours can be supplied if required.

3. Subject to confirmation, similar cables can be manufactured to other specifications.

SINGLE CORE CU TPS CABLES

Circular construction Copper conductor PVC insulation PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Size		8		8		\otimes			TES		TE			
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)
1.0	15	51.6	15	44.7	16	44.7	24	51.6	18	44.7	20	51.6	18	44.7
1.5	18	33.0	18	28.6	19	28.6	31	33.0	22	28.6	25	33.0	22	28.6
2.5	26	18.0	26	15.6	29	15.6	43	18.0	30	15.6	35	18.0	30	15.6
4	35	11.2	35	9.71	38	9.71	56	11.2	40	9.71	45	11.2	40	9.71
6	46	7.50	46	6.49	48	6.49	71	7.50	50	6.49	57	7.50	50	6.49
10	62	4.46	62	3.86	66	3.86	94	4.46	65	3.86	76	4.46	65	3.86
16	82	2.81	82	2.43	88	2.43	134	2.81	114	2.43	98	2.81	86	2.43
Issue: Jar	nuary	2012						1				1		

Notes:

1. Refer to Product Sheet 010-01 B for current ratings and voltage drops for these cables enclosed in conduit or trunking.

2. Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

TWO CORE CU TPS CABLES

Flat construction Copper conductor PVC insulation PVC sheath

Conductor Size	Thickness of Insulation	Thickness of Sheath	Nominal Overall Size	Linear Mass
(mm²)	(mm)	(mm)	(mm)	(kg/m)
1.0*	0.6	0.9	6.3 x 4.0	0.050
1.5#	0.6	0.9	7.3 x 4.6	0.065
2.5	0.7	1.0	8.7 x 5.3	0.096
4	0.8	1.1	10.5 x 6.3	0.15
6	0.8	1.1	11.6 x 7.0	0.20
10	1.0	1.2	14.3 x 8.4	0.31
16	1.0	1.3	17.2 x 10.0	0.46

450/750 V. Made to AS/NZS 5000.2

Product Sheet No. 020-02 A (with Pilot)

Conductor Size Thickness of Insulation		Thickness of Sheath	Nominal Overall Size	Linear Mass
(mm²)	(mm)	(mm)	(mm)	(kg/m)
2 x 16 + 2.5	1.0	1.3	9.9 x 20.4	0.50

Issue: January 2012

450/750 V. Made to AS/NZS 5000.2

* Solid conductor

3 wire conductor

Notes:

1. Conductors 2.5 mm² and above are circular stranded.

2. Standard colours: Insulation - Red, Black, Orange (pilot); Sheath - White. Other colours can be supplied if required.

3. Subject to confirmation, similar cables can be manufactured to other specifications.

TWO CORE CU TPS CABLES

Flat construction Copper conductor PVC insulation PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Conductor Size		\supset	E)
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)
1.0	15	51.6	16	51.6
1.5	18	33.0	21	33.0
2.5	26	18.0	30	18.0
4	34	11.2	39	11.2
6	44	7.50	50	7.50
10	59	4.46	68	4.46
16	78	2.81	91	2.81
25	103	1.78	122	1.78
sue: January 2012			1	

Note:

1. Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

The values in this table are for typical New Zealand installation conditions of:-Ambient Air Temperature 30°C

TWO CORE & EARTH CU TPS CABLES

Flat construction Copper conductor PVC insulation PVC sheath

Product Sh	Product Sheet No. 020-03 A										
Conductor Size	Thickness of Insulation	Nominal Overall Size	Linear Mass								
(mm²)	(mm)	(mm)	(mm)	(kg/m)							
1.0*	0.6	0.9	8.6 x 4.0	0.070							
1.5#	0.6	0.9	10.1 x 4.6	0.090							
2.5	0.7	1.0	11.9 x 5.3	0.14							
4 (2.5)	0.8	1.1	14.8 x 6.4	0.19							
6 (2.5)	0.8	1.1	16.4 x 6.9	0.24							
10 (4)	1.0	1.2	18.8 x 8.4	0.37							
16 (6)	1.0	1.3	24.0 x 9.8	0.59							
Issue: January 20	12										
450/750 V. Made t	to AS/NZS 5000.2										

* Solid conductor

3 wire conductor

Notes:

1. Conductors 2.5 mm² and above are circular stranded.

2. Standard colours: Insulation - Black, Red, Green/Yellow (earth); Sheath - White. Other colours can be supplied if required.

3. Reduced earth size shown in brackets ().

4. Subject to confirmation, similar cables can be manufactured to other specifications.

TWO CORE & EARTH CU TPS CABLES

Flat construction Copper conductor PVC insulation PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Conductor Size		\bigcirc		3
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)
1.0	15	51.6	16	51.6
1.5	18	33.0	21	33.0
2.5	26	18.0	30	18.0
4	34	11.2	39	11.2
6	44	7.50	50	7.50
10	59	4.46	68	4.46
16	78	2.81	91	2.81
sue: January 2012				

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

The values in this table are for typical New Zealand installation conditions of:-Ambient Air Temperature 30°C

THREE CORE CU TPS CABLES

Flat construction Copper conductor PVC insulation PVC sheath

Conductor Size	Thickness of Insulation	Thickness of Sheath	Nominal Overall Size	Linear Mass
(mm²)	(mm)	(mm)	(mm)	(kg/m)
1.0*	0.6	0.9	8.6 x 4.0	0.071
1.5#	0.6	0.9	10.1 x 4.6	0.090
2.5	0.7	1.0	12.0 x 5.3	0.14

450/750 V. Made to AS/NZS 5000.2

* Solid conductor

3 wire conductor

Notes:

1. Conductors 2.5 mm² and above are circular stranded.

2. Standard colours: Insulation - Red, White, Blue; Sheath - White. Other colours can be supplied if required.

3. Subject to confirmation, similar cables can be manufactured to other specifications.

THREE CORE CU TPS CABLES

Flat construction Copper conductor PVC insulation PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Conductor Size			8		
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	
1.0	13	44.7	14	44.7	
1.5	16	28.6	17	28.6	
2.5	23	15.6	25	15.6	
sue: January 2012		· · ·			

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

The values in this table are for typical New Zealand installation conditions of:-Ambient Air Temperature 30°C

THREE CORE & EARTH CU TPS CABLES

Flat construction Copper conductor PVC insulation PVC sheath

Product Sheet No. 020-05 A							
Conductor Size	Thickness of Insulation	Thickness of Sheath	Nominal Overall Size	Linear Mass			
(mm²)	(mm)	(mm)	(mm)	(kg/m)			
1.0*	0.6	0.9	10.9 x 4.0	0.093			
1.5#	0.6	0.9	13.0 x 4.6	0.12			
2.5	0.7	1.0	15.4 x 5.3	0.18			
4 (2.5)	0.8	1.1	18.2 x 6.4	0.26			
6 (2.5)	0.8	1.1	19.9 x 7.1	0.33			
10 (4)	1.0	1.2	24.8 x 8.4	0.51			
16 (6)	1.0	1.3	31.0 x 9.7	0.80			
Issue: January 20	12						
450/750 V. Made t	to AS/NZS 5000.2						

* Solid conductor

3 wire conductor

Notes:

1. Conductors 2.5 mm² and above are circular stranded.

2. Standard colours: Insulation - Red, White, Blue, Green/Yellow (earth); Sheath - White. Other colours can be supplied if required.

3. Reduced earth size shown in brackets ().

4. Subject to confirmation, similar cables can be manufactured to other specifications.

THREE CORE & EARTH CU TPS CABLES

Flat construction Copper conductor PVC insulation PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Conductor Size				8
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)
1.0	13	44.7	14	44.7
1.5	16	28.6	17	28.6
2.5	23	15.6	25	15.6
4	29	9.71	33	9.71
6	38	6.49	42	6.49
10	50	3.86	58	3.86
16	66	2.43	78	2.43
ssue: January 2012		· · ·		

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

The values in this table are for typical New Zealand installation conditions of:-Ambient Air Temperature 30°C

FOUR CORE CU TPS CABLES

Flat construction Copper conductor PVC insulation PVC sheath

Conductor Size	Thickness of Insulation	Thickness of Sheath	Nominal Overall Size	Linear Mass
(mm²)	(mm)	(mm)	(mm)	(kg/m)
2.5	0.7	1.0	15.4 x 5.3	0.18
4	0.8	1.1	19.1 x 6.5	0.29
Issue: January 20	12			

Notes:

1. Conductors 2.5 \mbox{mm}^2 and above are circular stranded.

2. Standard colours: Insulation - Red, White, Blue, Black; Sheath - White. Other colours can be supplied if required.

3. Subject to confirmation, similar cables can be manufactured to other specifications.

FOUR CORE CU TPS CABLES

Flat construction Copper conductor PVC insulation PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Conductor Size			8		
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	
2.5	23	15.6	25	15.6	
4	39	9.71	33	9.71	

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

The values in this table are for typical New Zealand installation conditions of:-Ambient Air Temperature 30°C

SINGLE CORE CU PVC NEUTRAL SCREEN CABLES

Circular construction Copper conductor PVC insulation Copper neutral screen PVC sheath

Conductor	Thickness of	Neutral Screen		Thickness of	Nominal Overall	Linear
Size	Size Insulation	Physical Area	Nominal No. & Size	Sheath	Diameter	Mass
(mm²)	(mm)	(mm²)	(mm)	(mm)	(mm)	(kg/m)
2.5	0.8	4	20x 0.53	3.2	11.5	0.20
4	1.0	6	25 x 0.53	3.2	12.5	0.24
6	1.0	6	27 x 0.53	3.2	13.1	0.28
10	1.0	10	29 x 0.67	3.2	14.2	0.38
16	1.0	16	20 x 1.01	3.2	15.9	0.51
25	1.2	25	25 x 1.13	3.2	17.9	0.73
35	1.2	35	24 x 1.36	3.2	19.5	0.93
50	1.4	48	21 x 1.70	3.2	21.8	1.2

0.6/1 kV. Made to AS/NZS 4961

Product Sheet No. 080-01 A (with Pilot)									
Conductor	onductor Thickness of Size Insulation	Neutral Screen		Thickness of	Nominal Overall	Linear			
Size		Physical Area	Nominal No. & Size	Sheath	Diameter	Mass			
(mm²)	(mm)	(mm²)	(mm)	(mm)	(mm)	(kg/m)			
16 + 4P	1.0	16	46 x 0.67	3.2	22.2 x 15.2	0.67			
25 + 4P	1.2	26	44 x 0.86	3.2	26.2 x 17.3	0.93			
Issue: Jan	uary 2012								
0.6/1 kV. N	lade to AS/NZS 49	61							

Notes:

1. Conductors are circular stranded.

2. Standard colours: Insulation – Red, Orange (pilot); Sheath – Black.

3. Subject to confirmation, similar cables can be manufactured to other specifications.

SINGLE CORE CU PVC NEUTRAL SCREEN CABLES

Circular construction Copper conductor **PVC** insulation Copper neutral screen PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Conductor Size	0				The second secon	TENET,			
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	
2.5	30	18.0	31	18.0	33	18.0	33	18.0	
4	39	11.2	42	11.2	43	11.2	43	11.2	
6	50	7.50	52	7.50	55	7.50	55	7.50	
10	68	4.46	73	4.46	73	4.46	73	4.46	
16	91	2.81	97	2.81	125	2.81	95	2.81	
25	122	1.78	129	1.78	162	1.78	123	1.78	
35	149	1.28	158	1.28	196	1.28	150	1.28	
50	181	0.958	194	0.958	232	0.958	178	0.958	
Issue: Jan	uary 2012								
0.6/1 kV. N	lade to AS/NZ	ZS 4961							

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

TWO CORE CU PVC NEUTRAL SCREEN CABLES

Circular construction Copper conductor PVC insulation Copper neutral screen PVC sheath

	Thickness of	Neutral Screen		Thickness of Sheath	Nominal Overall	Linear
Size	Insulation	Physical Area Nominal No. & Size			Diameter	Mass
(mm²)	(mm)	(mm²)	(mm)	(mm)	(mm)	(kg/m)
2.5	0.8	5	24 x 0.53	3.2	15.2 x 11.6	0.28
4	1.0	6	29 x 0.53	3.2	17.2 x 12.5	0.35
6	1.0	7	32 x 0.53	3.2	18.0 x 13.0	0.42
10	1.0	10	47 x 0.53	3.2	20.1 x 14.0	0.56
16	1.0	16	46 x 0.67	3.2	22.2 x 15.2	0.76
25	1.2	26	44 x 0.86	3.2	26.1 x 17.3	1.1
35	1.2	35	44 x 1.01	3.2	28.9 x 18.8	1.4

Produc	Product Sheet No. 080-02 A (with Pilot)										
Conductor	Thickness of	Neut	ral Screen	Thickness of	Nominal Overall	Linear					
Size	Insulation	Physical Area	Nominal No. & Size	Sheath	Diameter	Mass					
(mm²)	(mm)	(mm²)	(mm)	(mm)	(mm)	(kg/m)					
2 x 16 + 4P	1.0	16	46 x 0.67	3.2	23.3	0.92					
Issue: Jan	Issue: January 2012										
0.6/1 kV. N	lade to AS/NZS 49	61									

Notes:

1. Conductors are circular stranded.

2. Standard colours: Insulation - Red, White, Orange (pilot); Sheath - Black.

3. Subject to confirmation, similar cables can be manufactured to other specifications.

TWO CORE CU PVC NEUTRAL SCREEN CABLES

Circular construction Copper conductor PVC insulation Copper neutral screen PVC sheath Current ratings (A) and voltage drops (mV/A.m) *

Conductor Size	8				\odot	IST I			
(mm²)	(A)	(mV/A.m)	(A)	(mV/Am)	(A)	(mV/A.m)	(A)	(mV/A.m)	
2.5	25	15.6	26	15.6	28	15.6	28	15.6	
4	33	9.71	35	9.71	36	9.71	36	9.71	
6	42	6.49	46	6.49	46	6.49	46	6.49	
10	58	3.86	62	3.86	61	3.86	61	3.86	
16	78	2.43	82	2.43	106	2.43	80	2.43	
25	104	1.54	111	1.54	138	1.54	103	1.54	
35	128	1.11	137	1.11	165	1.11	125	1.11	

0.6/1 kV. Made to AS/NZS 4961

* This table relates to two and three phase operation - for single phase operation Product Sheet 080-01B is applicable

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30 °C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

THREE CORE CU PVC NEUTRAL SCREEN CABLES

Circular construction Copper conductor PVC insulation Copper neutral screen PVC sheath

Conductor		Neut	ral Screen	Thickness of	Nominal Overall	Linear
Size	Insulation	Physical Area	Nominal No. & Size	Sheath	Diameter	Mass
(mm²)	(mm)	(mm²)	(mm)	(mm)	(mm)	(kg/m)
2.5	0.8	7	30 x 0.53	3.2	16.0	0.36
4	1.0	8	37 x 0.53	3.2	18.1	0.47
6	1.0	9	42 x 0.53	3.2	19.1	0.56
10	1.0	11	48 x 0.53	3.2	21.0	0.74
16	1.0	16	46 x 0.67	3.2	23.6	1.01
Issue: Sep	tember 2012					
0.6/1 kV. M	lade to AS/NZS 490	61				

Notes:

1. Conductors are circular stranded.

2. Standard Colours: Insulation - Red, White, Blue; Sheath - Black.

3. Subject to confirmation, similar cables can be manufactured to other specifications.

THREE CORE CU PVC NEUTRAL SCREEN CABLES

Circular construction Copper conductor PVC insulation Copper neutral screen PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Product Sheet No. 080-03 B

Conductor Size	$\overline{\otimes}$		\square		TEGET/			
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)
2.5	25	15.6	26	15.6	28	15.6	28	15.6
4	33	9.71	35	9.71	36	9.71	36	9.71
6	42	6.49	46	6.49	46	6.49	46	6.49
10	58	3.86	62	3.86	61	3.86	61	3.86
16	78	2.43	82	2.43	106	2.43	80	2.43
Issue: Sep	tember 2012							
0.6/1 kV. N	lade to AS/N	ZS 4961						

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

FOUR CORE CU PVC NEUTRAL SCREEN CABLES

Circular construction Copper conductor PVC insulation Copper neutral screen PVC sheath

Conductor		Neut	ral Screen	Thickness of	Nominal Overall	Linear Mass
Size	Insulation	Physical Area	Nominal No. & Size	Sheath	Diameter	
(mm²)	(mm)	(mm²)	(mm)	(mm)	(mm)	(kg/m)
2.5	0.8	8	34 x 0.53	3.2	17.0	0.41
4	1.0	9	42 x 0.53	3.2	19.3	0.55
6	1.0	10	46 x 0.53	3.2	20.6	0.66
10	1.0	12	54 x 0.53	3.2	22.6	0.88
16	1.0	17	47 x 0.67	3.2	25.4	1.22
Issue: Sep	tember 2012					
0.6/1 kV. N	lade to AS/NZS 49	61				

Notes:

1. Circular stranded conductor.

2. Standard colours: Insulation - Red, White, Blue, Black; Sheath - Black.

3. Subject to confirmation, similar cables can be manufactured to other specifications.

FOUR CORE CU PVC NEUTRAL SCREEN CABLES

Circular construction Copper conductor PVC insulation Copper neutral screen PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Product Sheet No. 080-04 B

110440								
Conductor Size								
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)
2.5	25	15.6	26	15.6	28	15.6	28	15.6
4	33	9.71	35	9.71	36	9.71	36	9.71
6	42	6.49	46	6.49	46	6.49	46	6.49
10	58	3.86	62	3.86	61	3.86	61	3.86
16	78	2.43	82	2.43	106	2.43	80	2.43
Issue: Sep	tember 2012							
0.6/1 kV. N	lade to AS/N	ZS 4961						

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

THREE CORE CU XLPE NEUTRAL SCREEN CABLES

Circular construction Copper conductor XLPE insulation Copper neutral screen PVC sheath

	Thickness of	Neut	ral Screen	Thickness of	Nominal Overall	Linear
Size	Insulation	Physical Area	Nominal No. & Size	Sheath	Diameter	Mass
(mm²)	(mm)	(mm²)	(mm)	(mm)	(mm)	(kg/m)
16*	0.7	16	46 x 0.67	3.2	23.0	0.97
25*	0.9	26	44 x 0.86	3.2	25.6	1.3
35	0.9	35	44 x 1.01	3.2	26.0	1.7
50	1.0	48	48 x 1.13	3.2	29.0	2.2
70	1.1	68	47 x 1.36	3.2	33.1	3.1
95	1.1	95	42 x 1.70	3.2	37.0	4.1

Product	Product Sheet No. 081-03 A (with Pilot)											
Conductor	Conductor Size Insulation		tral Screen	Thickness of Sheath	Nominal Overall	Linear						
Size			Physical Area Nominal No. & Size		Diameter	Mass						
(mm²)	(mm)	(mm²)	(mm)	(mm)	(mm)	(kg/m)						
3 x 16 + 4P	0.7	17	48 x 0.67	3.2	24.8	1.1						
Issue: Janua	ary 2012											

0.6/1 kV. Made to AS/NZS 4961

* Circular stranded conductor

Notes:

1. Conductors 35 \mbox{mm}^2 and above are shaped stranded.

 $\label{eq:2.2} \ensuremath{\text{2.5tandard}}\xspace \ensuremath{\text{colours:}}\xspace \ensuremath{\text{Insulation}}\xspace - \ensuremath{\text{Red}}\xspace, \ensuremath{\text{White}}\xspace, \ensuremath{\text{Orange}}\xspace \ensuremath{(\text{pilot})}\xspace; \ensuremath{(\text{shard})}\xspace \ensuremath{(\text{pilot})}\xspace; \ensuremath{(\text{shard})}\xspace \ensurem$

 $\label{eq:stables} \textbf{3. Subject to confirmation, similar cables can be manufactured to other specifications.}$

THREE CORE CU XLPE NEUTRAL SCREEN CABLES

Circular construction Copper conductor XLPE insulation Copper neutral screen PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Product Sheet No. 081-03 B

Conductor Size		\mathfrak{S}						
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)
16	91	2.55	97	2.55	118	2.55	87	2.55
25	122	1.61	131	1.61	153	1.61	114	1.61
35	151	1.17	162	1.17	184	1.17	139	1.17
50	185	0.868	198	0.868	218	0.868	166	0.868
70	234	0.609	252	0.609	269	0.609	207	0.609
95	289	0.450	311	0.450	323	0.450	249	0.450
Issue: Jan			311	0.450	323	0.450	249	0.450

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

FOUR CORE CU XLPE NEUTRAL SCREEN CABLES

Circular construction Copper conductor XLPE insulation Copper neutral screen PVC sheath

Conductor	Thickness of	Neut	ral Screen	Thickness of	Nominal Overall	Linear
Size	Insulation	Physical Area	Nominal No. & Size	Sheath	Diameter	Mass
(mm²)	(mm)	(mm²)	(mm)	(mm)	(mm)	(kg/m)
16 [#]	0.7	16	46 x 0.67	3.2	24.1	1.1
25*	0.9	26	44 x 0.86	3.2	28.0	1.6
35	0.9	35	44 x 1.01	3.2	29.4	2.1
50	1.0	48	48 x 1.13	3.2	32.3	2.7
70	1.1	68	47 x 1.36	3.2	36.7	3.8
95	1.1	94	65 x 1.36	3.2	40.3	5.2

Circular stranded conductor

* Circular compacted conductor

Notes:

1. Conductors 35 mm² and above are shaped stranded.

2. Standard colours: Insulation - Red, White, Blue, Black; Sheath - Black.

3. Subject to confirmation, similar cables can be manufactured to other specifications.

FOUR CORE CU XLPE NEUTRAL SCREEN CABLES

Circular construction Copper conductor XLPE insulation Copper neutral screen PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Conductor Size		8		8			J.									
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)								
16	91	2.55	97	2.55	118	2.55	87	2.55								
25	122	1.61	131	1.61	153	1.61	114	1.61								
35	151	1.17	162	1.17	184	1.17	139	1.17								
50	185	0.868	198	0.868	218	0.868	166	0.868								
70	234	0.609	252	0.609	269	0.609	207	0.609								
95	289	0.450	311	0.450	323	0.450	249	0.450								
Issue: Jan	uary 2012															
0.6/1 kV. N	lade to AS/NZ	ZS 4961						0.6/1 kV. Made to AS/NZS 4961								

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

SINGLE CORE AL XLPE NEUTRAL SCREEN CABLES

Circular construction Aluminium conductor XLPE insulation Copper neutral screen PVC sheath

Conductor Size	Thickness of	Neut	ral Screen	Thickness of	Nominal Overall Diameter	Linear Mass
	Insulation	Physical Area	Nominal No. & Size	Sheath		
(mm²)	(mm)	(mm²)	(mm)	(mm)	(mm)	(kg/m)
70	1.1	41	28 x 1.36	3.2	21.5	0.87
95	1.1	57	25 x 1.70	3.2	23.9	1.1
120	1.2	71	22 x 2.03	3.2	26.1	1.4
185	1.6	110	22 x 2.52	3.2	31.1	2.0

Product Sheet No. 082-01 A (with Pilot)										
Conductor Size	Thickness of Insulation	Neut	ral Screen	Thickness of	Nominal Overall	Linear Mass				
		Physical Area	Nominal No. & Size	Sheath	Diameter					
(mm²)	(mm)	(mm²)	(mm)	(mm)	(mm)	(kg/m)				
70 + 4P	1.1	42	29 x 1.36	3.2	28.6 x 21.2	1.1				
Issue: Jan	uary 2012	•			· I					

0.6/1 kV. Made to AS/NZS 4961

Notes:

1. Conductors are compacted stranded.

2. Standard colours: Insulation - Red, Orange (pilot); Sheath - Black.

3. Subject to confirmation, similar cables can be manufactured to other specifications.

SINGLE CORE AL XLPE NEUTRAL SCREEN CABLES

Circular construction Aluminium conductor XLPE insulation Copper neutral screen PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Product Sheet No. 082-01 B

FIUUUCU	Froudet oneet No. 002-01 B								
Conductor Size				O			<i>E</i>		
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	
70	213	1.15	229	1.15	249	1.15	189	1.15	
95	263	0.835	283	0.835	299	0.835	231	0.835	
120	307	0.666	329	0.666	341	0.666	264	0.666	
185	406	0.448	436	0.448	433	0.448	345	0.448	
Issue: Janua	ry 2012					·	<u> </u>		
0.6/1 kV. Mac	de to AS/NZS	6 4961							

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

THREE CORE AL XLPE NEUTRAL SCREEN CABLES

Circular construction Aluminium conductor XLPE insulation Copper neutral screen PVC sheath

Conductor Size	Thickness of	Neut	ral Screen	Thickness of	Nominal Overall	Linear
	Insulation	Physical Area	Nominal No. & Size	Sheath	Diameter	Mass
(mm²)	(mm)	(mm²)	(mm)	(mm)	(mm)	(kg/m)
35*	0.9	26	44 x 0.86	3.2	28.1	1.0
50*	1.0	29	50 x 0.86	3.2	31.0	1.2
70	1.1	42	52 x 1.01	3.2	32.4	1.6
95	1.1	57	57 x 1.13	3.2	35.9	2.0
185	1.6	116	50 x 1.70	3.2	47.0	3.7

Conductor Size (mm ²)	Thickness of	Neut	ral Screen	Thickness of	Nominal Overall	Linear
	Insulation (mm)	Physical Area (mm ²)	Nominal No. & Size (mm)	Sheath (mm)	Diameter (mm)	Mass (kg/m)
(11112)	(1111)	(1111-2)	(IIIII)	(1111)	(1111)	(Kg/III)
95 + 10P	1.1	57	57 x 1.13	3.2	39.0	2.2
120 + 10P	1.2	73	50 x 1.36	3.2	39.6	2.5
185 + 10P	1.6	114	50 x 1.70	3.2	48.0	3.7
300 + 10P	1.8	185	57 x 2.03	3.2	57.4	5.6
Issue: Jan	uarv 2012	1			IU	

* Circular compacted conductor

Notes:

1. Conductors 70 mm² and above are shaped stranded conductor.

2. Standard colours: Insulation - Red, White, Blue; Sheath - Black.

3. Subject to confirmation, similar cables can be manufactured to other specifications.

THREE CORE AL XLPE NEUTRAL SCREEN CABLES

Circular construction Aluminium conductor XLPE insulation Copper neutral screen PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Produc	Product Sheet No. 082-03 B									
Conductor Size	C	8		\mathfrak{D}				57		
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)		
35	117	1.93	125	1.93	142	1.93	108	1.93		
50	143	1.43	154	1.43	170	1.43	128	1.43		
70	182	0.993	196	0.993	209	0.993	161	0.993		
9 5	224	0.723	242	0.723	250	0.723	194	0.723		
120	262	0.577	282	0.577	286	0.577	225	0.577		
185	347	0.388	374	0.388	364	0.388	291	0.388		
300	475	0.258	514	0.258	477	0.258	391	0.258		
Issue: Jan	uary 2012									
0.6/1 kV. N	lade to AS/NZ	ZS 4961								

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

SINGLE CORE CU VINTOL CABLES

Circular construction Copper conductor PVC insulation PVC sheath

Conductor Size	Thickness of Insulation	Thickness of Sheath	Nominal Overall Diameter	Linear Mass
(mm²)	(mm)	(mm)	(mm)	(kg/m)
4	1.0	1.4	7.7	0.10
16	1.0	1.4	10.0	0.23
25	1.2	1.4	11.8	0.35
35	1.2	1.4	13.0	0.45
50	1.4	1.4	14.6	0.57
70	1.4	1.4	16.4	0.82

0.6/1 kV. Made to AS/NZS 5000.1

Notes:

1. Conductors are circular stranded.

2. Standard colours: Insulation - Natural; Sheath - Red, White, Blue, Black.

SINGLE CORE CU VINTOL CABLES

Circular construction Copper conductor PVC insulation PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Produc	Product Sheet No. 110-01 B													
Conductor Size		8	$\langle \rangle \rangle$	000		\otimes							Z.	
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)
4	35	11.2	35	9.71	38	9.71	56	11.2	40	9.71	45	11.2	40	9.71
16	82	2.81	82	2.43	88	2.43	134	2.81	114	2.43	98	2.81	86	2.43
25	111	1.78	111	1.55	117	1.54	174	1.78	147	1.54	128	1.78	110	1.54
35	136	1.29	136	1.12	145	1.12	209	1.29	176	1.12	153	1.29	134	1.12
50	166	0.963	166	0.840	178	0.834	248	0.963	209	0.834	185	0.963	158	0.834
70	210	0.680	210	0.597	225	0.589	305	0.680	256	0.589	227	0.680	198	0.589
Issue: Jan	uary 2	012												
0.6/1 kV. N	Made t	o AS/NZS	5000.	1										

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

SINGLE CORE AL VINTOL CABLES

Circular construction Aluminium conductor PVC insulation PVC sheath

Product S	Product Sheet No. 110-01 A										
Conductor Size	Thickness of Insulation	Thickness of Sheath	Nominal Overall Diameter	Linear Mass							
(mm²)	(mm)	(mm)	(mm)	(kg/m)							
25	1.2	1.4	11.7	0.18							
35	1.2	1.4	13.4	0.24							
50	1.4	1.4	14.7	0.29							
70	1.4	1.4	16.4	0.39							
95	1.6	1.5	19.0	0.52							
120	1.6	1.5	20.7	0.62							
150	1.8	1.6	22.8	0.75							
185	2.0	1.7	25.1	0.92							
240	2.2	1.8	26.8	1.1							
Issue: January 2	012										
0.6/1 kV. Made t	o AS/NZS 5000.1										

Notes:

1. Conductors are circular stranded.

2. Standard colours: Insulation - Natural; Sheath - Red, White, Blue, Black.

SINGLE CORE AL VINTOL CABLES

Circular construction Aluminium conductor PVC insulation PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Produc	t S	heet N	lo.	110-0 [,]	1 B									
Conductor Size		8		8		∞			TA A				Z.	
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)
25	86	2.95	86	2.55	91	2.55	135	2.95	114	2.55	99	2.95	86	2.55
35	105	2.14	105	1.85	112	1.85	162	2.14	136	1.85	119	2.14	103	1.85
50	129	1.58	129	1.37	138	1.37	191	1.58	162	1.37	143	1.58	123	1.37
70	163	1.10	163	0.956	174	0.952	237	1.10	199	0.952	176	1.10	154	0.952
95	203	0.804	203	0.702	218	0.696	283	0.811	238	0.696	215	0.811	185	0.696
120	237	0.645	237	0.565	254	0.558	323	0.653	272	0.558	245	0.653	216	0.558
150	272	0.535	272	0.472	292	0.463	362	0.545	304	0.463	281	0.545	242	0.463
185	318	0.439	317	0.391	341	0.380	411	0.452	344	0.380	320	0.452	278	0.380
240	381	0.352	381	0.319	408	0.305	477	0.368	400	0.305	376	0.368	325	0.305
lssue: Jan 0.6/1 kV. N			5000.	1		1								

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

SINGLE CORE CU CANTOL CABLES

Circular construction Copper conductor XLPE insulation PVC sheath

Conductor Size	Thickness of Insulation	Thickness of Sheath	Nominal Overall Diameter	Linear Mass
(mm²)	(mm)	(mm)	(mm)	(kg/m)
16	0.7	1.4	9.4	0.21
25	0.9	1.4	10.9	0.31
35	0.9	1.4	11.9	0.41
50	1.0	1.4	13.4	0.54
70	1.1	1.4	15.0	0.75
95	1.1	1.5	16.9	1.0
120	1.2	1.5	18.6	1.3
150	1.4	1.6	20.6	1.6
185	1.6	1.6	22.8	1.9
240	1.7	1.7	25.5	2.5
300	1.8	1.8	28.1	3.1
400	2.0	1.9	31.8	4.0
500	2.2	2.0	35.7	5.0
630	2.4	2.2	40.1	6.4

Notes:

1. Conductors are compact circular stranded.

2. Standard colours: Insulation - Natural; Sheath - Black. Other colours can be supplied if required.

SINGLE CORE CU CANTOL CABLES

Circular construction Copper conductor XLPE insulation PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Produc	t SI	heet N	lo. ′	120-01	B									
Conductor Size		8		8	///	\mathcal{S}					T		Z.	
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)
16	95	2.95	95	2.55	101	2.55	149	2.95	125	2.55	107	2.95	925	2.55
25	129	1.87	129	1.62	138	1.62	192	1.87	162	1.62	140	1.87	121	1.62
35	158	1.35	158	1.18	169	1.17	230	1.35	193	1.17	168	1.35	147	1.17
50	194	1.01	194	0.878	207	0.872	273	1.01	229	0.872	202	1.01	174	0.872
70	246	0.710	246	0.623	264	0.615	335	0.710	280	0.615	249	0.710	217	0.615
95	306	0.528	306	0.467	328	0.457	401	0.528	335	0.457	305	0.528	261	0.457
120	358	0.431	358	0.385	384	0.373	457	0.431	381	0.373	348	0.431	304	0.373
150	413	0.365	413	0.330	443	0.316	514	0.365	428	0.316	391	0.365	342	0.316
185	480	0.311	479	0.285	515	0.269	581	0.311	484	0.269	453	0.311	388	0.269
240	574	0.262	573	0.245	616	0.227	674	0.262	560	0.227	532	0.262	456	0.227
300	666	0.233	662	0.222	713	0.202	761	0.233	630	0.202	601	0.233	525	0.202
400	779	0.211	772	0.205	832	0.183	865	0.211	715	0.183	699	0.211	596	0.183
500	903	0.196	893	0.193	961	0.170	977	0.196	805	0.170	791	0.196	693	0.170
630	1045	0.184	1032	0.182	1111	0.159	1098	0.184	902	0.159	916	0.184	778	0.159
Issue: Jani	uary 20	012												
0.6/1 kV. M	ade to	AS/NZS 5	5000.1											

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

SINGLE CORE AL CANTOL CABLES

Circular construction Aluminium conductor XLPE insulation PVC sheath

(mm ²) 25 35 50 70 95	(mm) 0.9 0.9 1.0 1.1 1.1	(mm) 1.4 1.4 1.4 1.4	(mm) 10.9 11.8 13.3	(kg/m) 0.15 0.18 0.24
35 50 70	0.9 1.0 1.1	1.4 1.4	11.8 13.3	0.18
50 70	1.0 1.1	1.4	13.3	
70	1.1			0.24
		1.4		
95	11		15.0	0.32
	1.1	1.5	16.9	0.42
120	1.2	1.5	18.5	0.51
150	1.4	1.6	20.6	0.62
185	1.6	1.6	22.7	0.76
240	1.7	1.7	25.5	0.97
300	1.8	1.8	27.9	1.2
400	2.0	1.9	31.3	1.5
500	2.2	2.0	35.0	1.9
630	2.4	2.2	39.4	2.4
800	2.6	2.3	44.7	3.0
Issue: January 2012	2		1	<u>I</u>

Notes:

1. Conductors are compact circular stranded.

2. Standard colours: Insulation - Natural; Sheath - Black. Other colours can be supplied if required.

SINGLE CORE AL CANTOL CABLES

Circular construction Aluminium conductor XLPE insulation PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Conductor Size	///	8		8		8			T		T		Z.	
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m
25	100	3.08	100	2.67	107	2.67	149	3.08	125	2.67	109	3.08	93	2.67
35	122	2.24	122	1.94	131	1.94	179	2.24	150	1.94	131	2.24	113	1.94
50	150	1.65	150	1.44	161	1.43	212	1.65	178	1.43	157	1.65	135	1.43
70	191	1.15	191	1.00	205	0.997	260	1.15	217	0.997	194	1.15	169	0.997
95	238	0.840	238	0.733	255	0.727	311	0.840	260	0.727	236	0.840	203	0.727
120	278	0.672	278	0.589	298	0.582	355	0.672	296	0.582	270	0.672	236	0.582
150	320	0.557	320	0.491	344	0.482	398	0.557	332	0.482	303	0.557	266	0.482
185	374	0.455	373	0.404	402	0.394	453	0.455	377	0.394	352	0.455	303	0.394
240	449	0.363	448	0.327	482	0.314	526	0.363	438	0.314	415	0.363	356	0.314
300	520	0.307	519	0.281	559	0.266	595	0.307	495	0.266	471	0.307	412	0.266
400	615	0.261	613	0.243	659	0.226	683	0.261	567	0.226	552	0.261	473	0.226
500	722	0.228	717	0.216	773	0.197	780	0.228	646	0.197	631	0.228	556	0.197
630	849	0.204	842	0.198	906	0.177	891	0.204	736	0.177	744	0.204	635	0.177
800	-	-	964	0.182	1037	0.161	-	-	825	0.161	-	-	706	0.161

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details. (Does not include 800mm²)

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

TWO CORE & EARTH CU REMOLEX CABLES

Circular construction Copper conductor PVC insulation PVC sheath

Product Sheet No. 021-02 A										
Conductor Size	Thickness of Insulation	Thickness of Sheath	Nominal Overall Diameter	Linear Mass						
(mm²)	(mm)	(mm)	(mm)	(kg/m)						
1.5*	0.6	1.2	8.8	0.12						
2.5	0.7	1.2	9.7	0.16						
4 (2.5)	0.8	1.3	11.3	0.21						
6 (2.5)	0.8	1.3	12.2	0.26						
10 (4)	1.0	1.3	16.1	0.44						
Issue: January 2	Issue: January 2012									
450/750 V. Made	e to AS/NZS 5000.2									

* 3 wire conductor

Notes:

1. Conductors 2.5 mm² and above are circular stranded.

2. Standard colours: Insulation - Red, Black, Green/Yellow (earth); Sheath - Black.

3. Reduced earth size shown in brackets ().

TWO CORE & EARTH CU REMOLEX CABLES

Circular construction Copper conductor PVC insulation PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Conductor Size	uctor Size			\odot
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)
1.5	21	33.0	22	33.0
2.5	30	18.0	31	18.0
4	39	11.2	42	11.2
6	50	7.50	52	7.50
10	68	4.46	73	4.46
ssue: January 2012			I	

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

The values in this table are for typical New Zealand installation conditions of:-Ambient Air Temperature 30°C

THREE CORE & EARTH CU REMOLEX CABLES

Circular construction Copper conductor PVC insulation PVC sheath

Product Sheet No. 021-03 A							
Conductor Size	ze Thickness of Insulation Thickness of Sheath		Nominal Overall Diameter	Linear Mass			
(mm²)	(mm)	(mm)	(mm)	(kg/m)			
1.5*	0.6	1.2	9.6	0.15			
2.5	0.7	1.3	10.8	0.20			
4 (2.5)	0.8	1.3	12.4	0.27			
6 (2.5)	0.8	1.3	13.5	0.34			
10 (4)	1.0	1.4	16.6	0.54			
16 (6)	1.0	1.5	19.0	0.76			
Issue: January	2012						

450/750 V. Made to AS/NZS 5000.2

* 3 wire conductor

Notes:

1. Conductors 2.5 mm² and above are circular stranded.

2. Standard colours: Insulation - Red, White, Blue, Green/Yellow (earth); Sheath - Black.

3. Reduced earth size shown in brackets ().

THREE CORE & EARTH CU REMOLEX CABLES

Circular construction Copper conductor PVC insulation PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Conductor Size	8	3		\bigotimes
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)
1.5	17	28.6	18	28.6
2.5	25	15.6	26	15.6
4	33	9.71	35	9.71
6	42	6.49	46	6.49
10	58	3.86	62	3.86
16	78	2.43	82	2.43

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

The values in this table are for typical New Zealand installation conditions of:-Ambient Air Temperature 30°C

FOUR CORE & EARTH CU REMOLEX CABLES

Circular construction Copper conductor PVC insulation PVC sheath

Product Sheet No. 021-04 A								
Conductor Size	Thickness of Insulation	Thickness of Sheath	Nominal Overall Diameter	Linear Mass				
(mm²)	(mm)	(mm)	(mm)	(kg/m)				
1.5	0.6	1.2	10.4	0.17				
2.5	0.7	1.3	11.8	0.24				
4 (2.5)	0.8	1.4	13.9	0.34				
Issue: January 2	2012							
450/750 V. Made	e to AS/NZS 5000.2							

Notes:

1. Conductors 2.5 mm² and above are circular stranded.

2. Standard colours: Insulation - Red, White, Blue, Black, Green/Yellow (earth); Sheath - Black.

3. Reduced earth size shown in brackets ().

FOUR CORE & EARTH CU REMOLEX CABLES

Circular construction Copper conductor PVC insulation PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Conductor Size		8			
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	
1.5	17	28.6	18	28.6	
2.5	25	15.6	26	15.6	
4	33	9.71	35	9.71	

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

The values in this table are for typical New Zealand installation conditions of:-Ambient Air Temperature $$30^\circ C$$

THREE CORE & EARTH CU CEMPEX CABLES

Circular construction Copper conductor XLPE insulation PVC sheath

Conductor Size	Thickness of Insulation	Thickness of Sheath	Nominal Overall Diameter	Linear Mass	
(mm²)	(mm)	(mm)	(mm)	(kg/m)	
4 (2.5)	0.7 (0.7)	1.8	13.3	0.28	
6 (2.5)	0.7 (0.7)	1.8	14.2	0.35	
10 (4)	0.7 (0.7)	1.8	16.3	0.52	
16 (6)	0.7 (0.7)	1.8	18.6	0.71	
25 (6)	0.9 (0.7)	1.8	21.5	1.0	
35 (10)	0.9 (0.7)	1.8	24.1	1.4	
50 (16)	1.0 (0.7)	1.8	27.2	1.8	
70 (25)	1.1 (0.9)	1.9	31.2	2.6	
95 (25)	1.1 (0.9)	2.0	35.6	3.4	
Issue: January 2	2012				
0.6/1 kV. Made t	o AS/NZS 5000.1				

Notes:

- 1. Conductors are circular stranded, sizes 16 \mbox{mm}^2 and above are compacted.
- 2. Standard colours: Insulation Red, White, Blue, Green/Yellow (earth); Sheath Black.
- 3. Earth size and insulation thickness shown in brackets ().
- 4. Subject to confirmation, similar cables can be manufactured to other specifications.

THREE CORE & EARTH CU CEMPEX CABLES

Circular construction Copper conductor XLPE insulation PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Product Sheet No. 161-03 B									
Conductor Size		8		3			A		
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	
4	42	10.2	39	10.2	40	10.2	40	10.2	
6	53	6.80	50	6.80	49	6.80	49	6.80	
10	73	4.05	68	4.05	67	4.05	67	4.05	
16	97	2.55	91	2.55	118	2.55	87	2.55	
25	131	1.61	122	1.61	153	1.61	114	1.61	
35	162	1.17	151	1.17	184	1.17	139	1.17	
50	198	0.868	185	0.868	218	0.868	166	0.868	
70	252	0.609	234	0.609	269	0.609	207	0.609	
95	311	0.450	289	0.450	323	0.450	249	0.450	
Issue: Janua	ry 2012					1			
0.6/1 kV. Mad	le to AS/NZS	5000.1							

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

FOUR CORE & EARTH CU CEMPEX CABLES

Circular construction Copper conductor XLPE insulation PVC sheath

Product Sheet No. 161-04 A								
Conductor Size	Thickness of Insulation	Thickness of Sheath	Nominal Overall Diameter	Linear Mass				
(mm²)	(mm)	(mm)	(mm)	(kg/m)				
2.5	0.7	1.8	14.5	0.30				
4 (2.5)	0.7 (0.7)	1.8	15.6	0.37				
6 (2.5)	0.7 (0.7)	1.8	15.7	0.43				
10 (4)	0.7 (0.7)	1.8	19.2	0.66				
16 (6)	0.7 (0.7)	1.8	20.5	0.90				
25 (6)	0.9 (0.7)	1.8	23.9	1.3				
35 (10)	0.9 (0.7)	1.8	26.6	1.7				
50 (16)	1.0 (0.7)	1.8	30.3	2.3				
70 (25)	1.1 (0.9)	2.0	34.9	3.3				
95 (25)	1.1 (0.9)	2.1	39.0	4.4				
Issue: January 2	2012			·				
0.6/1 kV. Made t	to AS/NZS 5000.1							

Notes:

- 1. Conductors are circular stranded, sizes 16 \mbox{mm}^2 and above are compacted.
- 2. Standard colours: Insulation Red, White, Blue, Black, Green/Yellow (earth); Sheath Black.
- 3. Earth size and insulation thickness shown in brackets ().
- 4. Subject to confirmation, similar cables can be manufactured to other specifications.

FOUR CORE & EARTH CU CEMPEX CABLES

Circular construction Copper conductor XLPE insulation PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Product Sheet No. 161-04 B									
Conductor Size		ð							
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	
2.5	29	16.4	31	16.4	31	16.4	31	16.4	
4	39	10.2	42	10.2	40	10.2	40	10.2	
6	50	6.80	53	6.80	49	6.80	49	6.80	
10	68	4.05	73	4.05	67	4.05	67	4.05	
16	91	2.55	97	2.55	118	2.55	87	2.55	
25	122	1.61	131	1.61	153	1.61	114	1.61	
35	151	1.17	162	1.17	184	1.17	139	1.17	
50	185	0.868	198	0.868	218	0.868	166	0.868	
70	234	0.609	252	0.609	269	0.609	207	0.609	
95	289	0.450	311	0.450	323	0.450	249	0.450	
Issue: Janua	ry 2012	·				<u>.</u>			
0.6/1 kV. Mad	le to AS/NZS	5000.1							

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

TWO CORE CU PVC ARMOURED MAINS CABLES

Circular construction Copper conductor PVC insulation Extruded bedding Galvanised steel wire armour PVC sheath

Product Sheet No. 140-02 A

Conductor	Thickn	ess of	Armour Wire Thickness of		Nominal E	Linear Mass	
Size	Insulation	Bedding	Size Sheath	Bedding	Overall		
(mm²)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(kg/m)
2.5*	0.8	1.0	0.9	1.8	9.6	14.9	0.43
4*	1.0	1.0	0.9	1.8	11.5	17.1	0.58
6*	1.0	1.0	1.25	1.8	12.6	18.9	0.74

Issue: January 2012

0.6/1 kV. Made to AS/NZS 5000.1

* Circular stranded conductor

Notes:

1. Standard Colours: Insulation – Red, Black; Sheath – Black.

TWO CORE CU PVC ARMOURED MAINS CABLES

Circular construction Copper conductor PVC insulation Extruded bedding Galvanised steel wire armour PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Produc	t Sheet	No. 140	-02 B					
Conductor Size	6	0		\mathfrak{O}			<i>K</i>	
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)
2.5	30	18.0	31	18.0	33	18.0	33	18.0
4	39	11.2	42	11.2	43	11.2	43	11.2
6	50	7.50	52	7.50	55	7.50	55	7.50
Issue: Jan	uary 2012							
0.6/1 kV. N	lade to AS/NZ	ZS 5000.1						

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

THREE CORE CU PVC ARMOURED MAINS CABLES

Circular construction Copper conductor PVC insulation Extruded bedding Galvanised steel wire armour PVC sheath

Conductor	Thickn	Thickness of Armour Wire		Thickness of	Nominal I	Linear Mass	
Size	Insulation	Bedding	Size	Sheath	Bedding	Overall	
(mm²)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(kg/m)
2.5*	0.8	1.0	0.9	1.8	10.2	15.8	0.48
4*	1.0	1.0	1.25	1.8	12.2	18.5	0.71
6*	1.0	1.0	1.25	1.8	13.4	19.7	0.83
10*	1.0	1.0	1.25	1.8	15.3	21.6	1.0
16*	1.0	1.0	1.25	1.8	17.5	23.8	1.3
25^	1.2	1.0	1.6	1.8	19.0	26.0	1.8

0.6/1 kV. Made to AS/NZS 5000.1

* Circular stranded conductor

^ Shaped stranded conductor

Notes:

1. Standard Colours: Insulation - Red, White, Blue; Sheath - Black.

THREE CORE CU PVC ARMOURED MAINS CABLES

Circular construction Copper conductor PVC insulation Extruded bedding Galvanised steel wire armour PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Product	Sheet I	No. 140-	03 B					
Conductor Size	e	\mathbf{O}		\odot	A		J.	
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)
2.5	25	15.6	26	15.6	28	15.6	28	15.6
4	33	9.71	35	9.71	36	9.71	36	9.71
6	42	6.49	46	6.49	46	6.49	46	6.49
10	58	3.86	62	3.86	61	3.86	61	3.86
16	78	2.43	82	2.43	106	2.43	80	2.43
25	104	1.54	111	1.54	138	1.54	103	1.54
Issue: Janua	ary 2012							
0.6/1 kV. Ma	de to AS/NZS	\$ 5000.1						

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

FOUR CORE CU PVC ARMOURED MAINS CABLES

Circular construction Copper conductor PVC insulation Extruded bedding Galvanised steel wire armour PVC sheath

Conductor Thickness of		less of	Armour Wire	Thickness of	Nominal I	Linear Mass	
Size	Size Insulation Bedding Size		Sheath	Bedding	Overall		
(mm²)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(kg/m)
2.5*	0.8	1.0	0.9	1.8	11.2	16.7	0.54
4*	1.0	1.0	1.25	1.8	13.5	19.7	0.81
6*	1.0	1.0	1.25	1.8	14.8	21.1	0.96
10*	1.0	1.0	1.25	1.8	16.9	23.2	1.2

* Circular stranded conductor

Notes:

1. Standard Colours: Insulation - Red, White, Blue, Black; Sheath - Black.

FOUR CORE CU PVC ARMOURED MAINS CABLES

Circular construction Copper conductor PVC insulation Extruded bedding Galvanised steel wire armour PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Conductor Size				\bigotimes				
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)
2.5	25	15.6	23	15.6	28	15.6	28	15.6
4	33	9.71	29	9.71	36	9.71	36	9.71
6	42	6.49	38	6.49	46	6.49	46	6.49
10	58	3.86	50	3.86	61	3.86	61	3.86
lssue: Jan 0.6/1 kV. N	uary 2012 lade to AS/N	ZS 5000.1				1		1

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

FOUR CORE CU XLPE ARMOURED MAINS CABLES

Circular construction Copper conductor XLPE insulation Extruded bedding Galvanised steel wire armour PVC sheath

		less of	Armour Wire	Thickness of	Nominal [Linear Mass	
Size	Insulation	Bedding	Size	Sheath	Bedding	Overall	
(mm²)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(kg/m)
16*	0.7	1.0	1.25	1.8	17.9	24.2	1.4
25^	0.9	1.0	1.6	1.8	21.3	28.3	2.0
35^	0.9	1.0	1.6	1.9	22.7	29.9	2.5
50	1.0	1.0	1.6	2.0	25.6	33.0	3.1
70	1.1	1.2	2.0	2.2	29.7	38.3	4.4
95	1.1	1.2	2.0	2.3	33.4	42.3	5.6
120	1.2	1.4	2.5	2.5	37.2	47.5	7.2
150	1.4	1.4	2.5	2.6	43.7	54.1	8.9
185	1.6	1.4	2.5	2.8	46.7	57.6	11
240	1.7	1.6	2.5	3.0	52.2	63.5	13
300	1.8	1.6	2.5	3.2	57.5	69.2	16
400	2.0	1.8	3.15	3.5	65.0	78.5	21

0.6/1 kV. Made to AS/NZS 5000.1

* Circular stranded conductor

^ Shaped stranded conductor

Notes:

1. Conductors 50 mm^2 and above are shaped stranded.

2. Standard Colours: Insulation – Red, White, Blue, Black; Sheath – Black.

FOUR CORE CU XLPE ARMOURED MAINS CABLES

Circular construction Copper conductor XLPE insulation Extruded bedding Galvanised steel wire armour PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Produc	t Sheet	No. 160	-04 B					
Conductor Size		8		8				57
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)
16	91	2.55	97	2.55	118	2.55	87	2.55
25	122	1.61	131	1.61	153	1.61	114	1.61
35	151	1.17	162	1.17	184	1.17	139	1.17
50	185	0.868	198	0.868	218	0.868	166	0.868
70	234	0.609	252	0.609	269	0.609	207	0.609
95	289	0.450	311	0.450	323	0.450	249	0.450
120	337	0.366	363	0.366	368	0.366	289	0.366
150	385	0.307	415	0.307	412	0.307	325	0.307
185	444	0.259	480	0.259	465	0.259	372	0.259
240	527	0.216	569	0.216	539	0.216	440	0.216
300	604	0.190	653	0.190	607	0.190	495	0.190
400	695	0.171	754	0.171	685	0.171	561	0.171
Issue: Jan	uary 2012							
0.6/1 kV. N	lade to AS/NZ	ZS 5000.1						

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

The values in this table are for typical New Zealand installation conditions of:-Ambient Air Temperature 30°C

Ampient Air Temperature	30 0
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

MULTICORE CONTROL CABLES

Circular construction Copper conductor PVC insulation PVC sheath

Number of Cores	Thickness of Insulation	Thickness of Sheath	Nominal Overall Diameter	Linear Mass
	(mm)	(mm)	(mm)	(kg/m)
		1.5mm ² (3W) Conductor Si	ze	
2	0.6	1.2	8.5	0.11
3	0.6	1.2	8.9	0.12
4	0.6	1.2	9.7	0.15
7	0.6	1.3	11.7	0.23
12	0.6	1.4	15.3	0.38
19	0.6	1.5	18.1	0.56
27	0.6	1.6	22.0	0.75
37	0.6	1.6	24.6	0.99
	2	2.5mm ² (7W) Conductor Si	ize	
2	0.7	1.2	9.6	0.14
3	0.7	1.2	10.2	0.17
4	0.7	1.3	11.3	0.21
7	0.7	1.3	13.3	0.32
12	0.7	1.5	17.9	0.55
19	0.7	1.6	21.1	0.80
27	0.7	1.7	25.7	1.07
37	0.7	1.8	28.9	1.43

Notes:

1. Other core configurations can be supplied if required.

2. Core identification is by the means of numbers.

3. Subject to confirmation, similar cables can be manufactured to other specifications.

4. Multicore Control Cables can also be manufactured with a Green/Yellow earth.

MULTICORE CONTROL CABLES

Circular construction Copper conductor PVC insulation PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Product S	Sheet No. 050-()1 B					
Conductor Size	Q	0	$\overline{\otimes}$				
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)			
1.5	21	33.0	17	28.6			
2.5	30	18.0	25	15.6			
Issue: January	/ 2012						
450/750 V. Ma	de to NZS 5000.3						

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

The values in this table are for typical New Zealand installation conditions of:-Ambient Air Temperature 30°C

Multi Circuit Operation

The current ratings given above are single circuit ratings, i.e, they relate to a single set of 2 or 3 loaded conductors. Whilst these cables are not intended for use as power cables, if they are to be operated with more than one set of conductors loaded for significant periods, the ratings given above should be reduced by application of an appropriate rating factor from the following table:

Rating Fa	Rating Factors for No. of Circuits											
No. of circuits	2	3	4	5	6	8	10	12	14	16	18	20 or more
Rating factor	0.80	0.70	0.65	0.60	0.57	0.52	0.48	0.45	0.43	0.41	0.39	0.38

A cable consisting of *n* loaded conductors should be considered as n/2 circuits of two loaded conductors or n/3 circuits of three loaded conductors as applicable.

MULTICORE ARMOURED CONTROL

Circular construction Copper conductor PVC insulation Extruded bedding Galvanised steel wire armour PVC sheath

Number	Thickn	ess of	Armour Wire	Thickness of	Nominal E	Diameters	Linear
of Cores	Insulation	Bedding	Size	Sheath	Bedding	Overall	Mass
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(kg/m)
			1.5mm² (3W) (Conductor Size			
2	0.6	0.8	0.9	1.4	7.7	12.4	0.32
3	0.6	0.8	0.9	1.4	8.1	12.9	0.33
4	0.6	0.8	0.9	1.4	8.9	13.7	0.38
7	0.6	0.8	0.9	1.4	10.7	15.4	0.49
12	0.6	0.8	1.25	1.5	14.1	19.7	0.85
19	0.6	0.8	1.25	1.6	16.7	22.5	1.1
27	0.6	1.0	1.6	1.7	20.8	27.5	1.6
37	0.6	1.0	1.6	1.8	23.3	30.3	1.9
			2.5mm² (7W) (Conductor Size			
2	0.7	0.8	0.9	1.4	8.8	13.5	0.36
3	0.7	0.8	0.9	1.4	9.3	14.1	0.41
4	0.7	0.8	0.9	1.4	10.2	15.0	0.47
7	0.7	0.8	1.25	1.5	12.3	18.0	0.73
12	0.7	0.8	1.25	1.6	16.4	22.3	1.1
19	0.7	1.0	1.6	1.7	19.8	26.6	1.6
27	0.7	1.0	1.6	1.8	24.2	31.2	2.1
37	0.7	1.0	1.6	1.9	27.2	34.4	2.5
37 Issue: Janu 0.6/1 kV. Ma	ary 2012	1.0	1.0	1.9	21.2	34.4	<u> </u>

Notes:

1. Other core configurations can be supplied if required.

2. Core identification is by the means of numbers.

3. Subject to confirmation, similar cables can be manufactured to other specifications.

4. Multicore Control Cables can also be manufactured with a Green/Yellow earth.

MULTICORE ARMOURED CONTROL

Circular construction Copper conductor PVC insulation Extruded bedding Galvanised steel wire armour PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Product S	Product Sheet No. Cables 060-01 B									
Conductor Size		$\hat{\mathbf{O}}$								
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)						
1.5	21	33.0	17	28.6						
2.5	30	18.0	25	15.6						
Issue: January	y 2012									
0.6/1 kV. Made	e to BS 6346									

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

The values in this table are for typical New Zealand installation conditions of:-Ambient Air Temperature 30°C

Multi Circuit Operation

The current ratings given above are single circuit ratings, i.e they relate to a single set of 2 or 3 loaded conductors. Whilst these cables are not intended for use as power cables, if they are to be operated with more than one set of conductors loaded for significant periods, the ratings given above should be reduced by application of an appropriate rating factor from the following table:

Rating Fa	Rating Factors for No. of Circuits											
No. of circuits	2	3	4	5	6	8	10	12	14	16	18	20 or more
Rating factor	0.80	0.70	0.65	0.60	0.57	0.52	0.48	0.45	0.43	0.41	0.39	0.38

A cable consisting of *n* loaded conductors should be considered as n/2 circuits of two loaded conductors or n/3 circuits of three loaded conductors as applicable.

VAROLEX CABLES

Circular construction Copper conductor XLPE insulation PVC bedding Copper tape PVC sheath

Conductor Size	Thickness of Insulation	Combined Earth Size	Nominal Diameter Over Tape	Nominal Overall Diameter	Linear Mass
(mm²)	(mm)	(mm²)	(mm)	(mm)	(kg/m)
2.5*	0.7	2.5*	10.9	14.6	0.32
4	0.7	4.5	13.0	16.6	0.44
6	0.7	4.5	13.8	17.5	0.51
10	0.7	4.5	14.8	18.5	0.62
16	0.8	7.5	17.0	20.6	0.86
25	0.9	12	19.2	22.8	1.2
35	0.9	18	21.9	25.6	1.6
50	1.0	30	25.1	28.8	2.1
70	1.1	30	28.1	32.0	2.8
95	1.1	48	33.9	38.0	3.9
120	1.2	48	38.9	43.2	4.7
150	1.4	75	42.6	47.3	5.9
185	1.6	75	47.5	52.0	7.1
240	1.7	105	53.6	58.9	9.2

0.6/1 kV. Made to AS/NZS 5000.1

* Split earth not feasible, therefore a single earth conductor is utilised.

Notes:

1. Conductors are circular stranded.

2. Standard colours: Insulation - Red, White, Blue, Green/Yellow (earth); Sheath - Black.

3. These cables are specifically designed to suit the wide range of requirements of Variable Speed Drives. All features reducing the transmission of electromagnetic interference have been considered: the cable minimises capacitance of the power conductors, has an electrically balanced construction including split earths and has a copper screen.

VAROLEX CABLES

Circular construction Copper conductor XLPE insulation PVC bedding Copper tape PVC sheath Current ratings (A) and voltage drops (mV/A.m)

Product	Product Sheet No. 070-01 B										
Conductor Size					J.		<i>K</i>				
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)			
2.5	29	16.4	31	16.4	31	16.4	31	16.4			
4	39	10.2	42	10.2	40	10.2	40	10.2			
6	50	6.80	53	6.80	49	6.80	49	6.80			
10	68	4.05	73	4.05	67	4.05	67	4.05			
16	91	2.55	97	2.55	118	2.55	87	2.55			
25	122	1.61	131	1.61	153	1.61	114	1.61			
35	151	1.17	162	1.17	184	1.17	139	1.17			
50	185	0.868	198	0.868	218	0.868	166	0.868			
70	234	0.609	252	0.609	269	0.609	207	0.609			
95	289	0.450	311	0.450	323	0.450	249	0.450			
120	337	0.366	363	0.366	368	0.366	289	0.366			
150	385	0.307	415	0.307	412	0.307	325	0.307			
185	444	0.259	480	0.259	465	0.259	372	0.259			
240	527	0.216	569	0.216	539	0.216	440	0.216			
Issue: Janua	ry 2012										
0.6/1 kV. Mac	le to AS/NZS	5000.1									

Notes:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

The values in this table are fo	r typical New Ze	aland installation conditions of:-	
Ambient Air Temperature	30°C	Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m	Soil Temperature	15°C

2. The cable size should be confirmed with the Drive manufacturer before installation due to the possible derating caused by Harmonics.

FOUR CORE AL XLPE URD CABLES

Circular construction Aluminium conductor XLPE insulation PVC sheath

Product S	heet No. 171-04	A		
Conductor Size	Thickness of Insulation	Thickness of Sheath	Nominal Overall Diameter	Linear Mass
(mm²)	(mm)	(mm)	(mm)	(kg/m)
50	1.0	1.8	29.1	0.94
70	1.1	2.0	32.0	1.3
95	1.1	2.1	36.6	1.6
120	1.2	2.3	39.8	2.0
185	1.6	2.6	49.6	3.1
240	1.7	2.8	55.3	3.9
300	1.8	3.0	60.2	4.9
Issue: January 2	2012			
0.6/1 kV. Made t	o AS 4026			

Notes:

1. Conductors 70 mm² and above are shaped stranded.

- 2. Standard Colours: Insulation Red, White, Blue, Black; Sheath Black.
- 3. Subject to confirmation, similar cables can be manufactured to other specifications.

FOUR CORE AL XLPE URD CABLES

Circular construction Aluminium conductor XLPE insulation PVC sheath Current ratings (A) and voltage drops (mV/A.m)

					L.S.			
(mm²)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)	(A)	(mV/A.m)
50	143	1.43	154	1.43	170	1.43	128	1.43
70	182	0.993	196	0.993	209	0.993	161	0.993
95	224	0.723	242	0.723	250	0.723	194	0.723
120	262	0.577	282	0.577	286	0.577	225	0.577
185	347	0.388	374	0.388	364	0.388	291	0.388
240	413	0.307	446	0.307	423	0.307	345	0.307
300	475	0.258	514	0.258	477	0.258	391	0.258
Issue: January	/ 2012							1

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

CURRENT RATINGS

Copper conductor PVC insulation Unarmoured Sheathed or unsheathed

Table 3	.7 Sing	le Cond	uctor C	u PVC C	ables -	Single P	hase Ra	atings (/	A)
Conductor Size (mm ²)	00		8	\bigcirc			ISHI I	5051	
1	18	18	15	15	13	7	24	20	23
1.5	24	24	18	21	16	9	31	25	29
2.5	34	33	26	27	23	14	43	35	40
4	46	44	35	36	29	18	56	45	52
6	58	56	46	47	38	23	71	57	64
10	79	76	62	62	50	31	94	76	85
16	105	101	82	80	64	41	134	98	109
25	141	136	111	107	86	55	174	128	142
35	174	165	136	128	103	67	209	153	171
50	213	202	166	157	125	-	248	185	205
70	271	254	210	194	155	-	305	227	251
95	336	315	262	242	193	-	365	277	306
120	392	366	304	276	220	-	416	316	348
150	450	418	351	321	257	-	466	362	389
185	523	483	408	365	292	-	528	410	449
240	626	576	488	434	348	-	612	482	519
300	725	663	564	-	-	-	691	546	601
400	848	771	658	-	-	-	784	633	683
500	988	889	762	-	-	-	886	714	793
630	1156	1023	878	-	-	-	994	825	898

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C	Soil Thermal Resistivity	1.2 K.m/W
Soil Temperature	15°C	Depth of Burial	0.5 m

CURRENT RATINGS

Aluminium conductor PVC insulation Unarmoured Sheathed or unsheathed

Table 3.8 Single Conductor AI PVC Cables – Single Phase Ratings (A)									
Conductor Size (mm ²)	00	$\int \infty$	8	\bigcirc					
16	82	79	64	62	49	32	105	76	85
25	109	105	86	83	66	42	135	99	110
35	136	129	105	99	80	52	162	119	132
50	165	156	129	122	98	-	191	143	160
70	210	197	163	150	120	-	237	176	195
95	261	244	203	187	149	-	283	215	237
120	304	284	237	214	171	-	323	245	270
150	350	325	272	250	200	-	362	281	301
185	407	377	318	284	227	-	411	320	349
240	487	449	381	340	271	-	477	376	405
300	564	520	442	-	-	-	540	427	468
400	665	610	520	-	-	-	620	499	536
500	781	711	610	-	-	-	708	572	627
630	921	832	715	-	-	-	811	672	717

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

CURRENT RATINGS

Copper conductor XLPE insulation Unarmoured Sheathed or unsheathed

Table 3	.9 Singl	e Condu	uctor Cu	I XLPE (Cables -	Single	Phase I	Ratings	(A)
Conductor Size (mm ²)	000		8	\bigcirc			51 FI	5051	
1	22	22	18	18	14	9	21	21	26
1.5	29	28	22	23	18	11	28	28	32
2.5	40	40	31	33	26	15	39	39	44
4	53	52	41	42	33	21	49	49	57
6	67	66	52	52	42	26	62	62	71
10	92	90	72	72	57	35	83	83	93
16	123	119	95	92	74	47	149	107	120
25	166	160	129	124	99	64	192	140	156
35	205	195	158	149	119	79	230	168	187
50	251	238	194	183	146	-	273	202	226
70	320	300	246	224	180	-	335	249	276
95	397	372	306	281	224	-	401	305	331
120	464	432	358	321	256	-	457	348	383
150	535	496	413	362	289	-	514	391	429
185	622	574	480	426	340	-	581	453	495
240	746	684	574	507	406	-	674	532	574
300	866	790	666	-	-	-	761	601	663
400	1015	920	779	-	-	-	865	699	755
500	1186	1063	903	-	-	-	977	791	856
630	1387	1224	1045	-	-	-	1098	916	995

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

The values in this table are for typical New Zealand installation conditions of:-						
Ambient Air Temperature	30°C	Soil Thermal Resistivity	1.2 K.m/W			
Soil Temperature	15°C	Depth of Burial	0.5 m			

Aluminium conductor XLPE insulation Unarmoured Sheathed or unsheathed

Table 3	.10 Sing	gle Cond	ductor A		Cables	– Single	Phase	Ratings	; (A)
Conductor Size (mm ²)	00	$\int \infty$	0	\bigcirc			TENET /		
16	96	92	74	72	57	36	114	83	93
25	129	123	100	96	77	50	149	109	122
35	158	151	122	116	92	62	179	131	146
50	195	184	150	142	113	-	212	157	175
70	249	233	191	175	140	-	260	194	214
95	308	288	238	218	174	-	311	236	256
120	361	336	278	249	199	-	355	270	297
150	415	385	320	281	224	-	398	303	333
185	483	447	374	331	265	-	453	352	384
240	580	534	449	396	317	-	526	415	446
300	673	618	520	-	-	-	595	471	516
400	795	726	615	-	-	-	683	552	592
500	935	849	722	-	-	-	780	631	676
630	1103	994	849	-	-	-	891	744	792

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

Copper conductors

PVC insulation

Armoured or unarmoured -(including Neutral Screened cables)

Table 3	.11 Two	Conduc	tor Cu P\	/C Cable	s – Singl	e Phase	Ratings (A)
Conductor Size (mm ²)	\bigcirc				X			
1	17	16	15	13	11	8	19	19
1.5	22	21	18	16	15	10	23	23
2.5	31	30	26	23	22	15	33	33
4	42	39	34	31	27	19	43	43
6	52	50	44	40	35	25	55	55
10	73	68	59	55	48	34	73	73
16	97	91	78	73	62	46	125	95
25	129	122	103	97	82	60	162	123
35	158	149	128	120	103	74	196	150
50	194	181	152	145	122	-	232	178
70	245	229	194	184	155	-	285	222
95	302	283	233	226	186	-	342	267
120	350	328	275	262	219	-	391	310
150	400	374	309	300	247	-	438	349
185	459	430	357	344	285	-	494	399
240	544	508	415	407	332	-	572	463
300	624	583	483	466	388	-	645	531
400	719	671	549	537	440	-	729	603

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

Aluminium conductors

PVC insulation

Armoured or unarmoured - (including Neutral Screened cables)

Table 3.12 Two Conductor Al PVC Cables – Single Phase Ratings (A)								
Conductor Size (mm ²)	\odot	0	0		Ŕ			
16	75	71	59	56	48	35	97	73
25	100	95	80	75	64	47	125	96
35	123	115	99	92	80	58	152	117
50	150	141	117	113	95	-	179	139
70	190	178	150	143	120	-	221	173
95	234	219	180	176	145	-	265	208
120	272	255	213	204	171	-	304	242
150	310	291	239	233	192	-	340	271
185	358	335	278	268	222	-	385	311
240	425	398	325	318	260	-	447	362
300	489	457	380	366	303	-	506	417
400	570	532	437	425	349	-	579	477

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

Copper conductors

XLPE insulation

Armoured or unarmoured - (including Neutral Screened cables)

Table 3.	13 Two C	onductor	Cu XLPE (Cables – S	ingle Pha	se Rating	s (A)
Conductor Size (mm ²)	\square		$\overline{\bigcirc}$				
1	20	19	18	15	10	20	20
1.5	26	24	22	20	12	26	26
2.5	37	34	31	28	18	36	36
4	50	46	41	36	23	48	48
6	63	58	51	46	30	60	60
10	86	80	69	64	40	80	80
16	114	107	90	86	54	141	105
25	154	144	121	116	73	182	137
35	190	178	145	142	89	219	165
50	232	217	178	174	-	261	198
70	295	275	220	220	-	321	244
95	364	340	275	272	-	385	299
120	424	395	314	316	-	439	340
150	485	452	365	361	-	492	391
185	560	520	415	417	-	556	442
240	664	618	493	494	-	645	519
300	763	710	575	568	-	728	597
400	884	820	656	656	-	825	677

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

Aluminium conductors

XLPE insulation

Armoured or unarmoured - (including Neutral Screened cables)

Table 3	. 14 Two	Conducto	r Al XLPE	Cables – \$	Single Pha	se Rating	s (A)
Conductor Size (mm ²)	\square		$\overline{\otimes}$				
16	89	83	69	66	42	109	80
25	120	112	94	89	56	141	106
35	147	138	112	110	69	170	127
50	179	168	139	134	-	202	154
70	229	213	171	171	-	249	189
95	283	263	213	211	-	299	231
120	329	307	244	245	-	341	264
150	376	351	283	281	-	382	303
185	436	406	322	325	-	433	345
240	519	483	385	386	-	504	406
300	598	556	451	444	-	570	468
400	700	649	519	519	-	653	536

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

Copper conductor PVC insulation Unarmoured Sheathed or unsheathed

Table 3	.15 Sin	igle Con	ductor	Cu PVC	Cables ·	– Three	Phase I	Ratings	(A)
Conductor Size (mm ²)	000	8	8	\bigcirc			SHI I		
1	18	16	15	14	11	7	18	18	21
1.5	23	19	18	17	14	9	22	22	26
2.5	33	29	26	24	19	14	30	30	36
4	43	38	35	32	26	18	40	40	47
6	56	48	46	40	32	23	50	50	58
10	76	66	62	54	42	31	65	65	77
16	101	88	82	71	57	41	114	86	99
25	137	117	111	92	73	55	147	110	129
35	169	145	136	114	91	67	176	134	154
50	206	178	166	136	108	-	209	158	185
70	262	225	210	173	139	-	256	198	226
95	327	280	262	209	168	-	307	239	275
120	382	327	304	247	197	-	349	277	311
150	439	376	351	278	222	-	392	311	349
185	510	437	407	324	259	-	442	358	402
240	610	521	486	377	302	-	512	415	464
300	707	603	561	442	355	-	576	477	537
400	828	701	653	504	402	-	652	541	608
500	964	809	754	596	477	-	735	628	705
630	1129	931	866	670	537	-	823	703	795

Note:

The values in this table are for typical New Zealand installation conditions of:-

Ambient Air Temperature	30°C	Soil Thermal Resistivity	1.2 K.m/W
Soil Temperature	15°C	Depth of Burial	0.5 m

Aluminium conductor PVC insulation Unarmoured Sheathed or unsheathed

Table 3	.16 Sir	ngle Con	ductor A	AI PVC (Cables -	Three	Phase R	atings (A)
Conductor Size (mm ²)	000	8	00	$\overline{}$					75057/
16	79	67	64	55	44	32	89	66	77
25	106	91	86	72	57	43	114	86	100
35	131	112	105	89	71	52	136	103	119
50	161	138	129	105	84	-	162	123	144
70	204	174	163	135	107	-	199	154	175
95	253	218	203	162	130	-	238	185	213
120	296	254	237	193	154	-	272	216	242
150	340	292	272	217	173	-	304	242	271
185	396	341	317	253	202	-	344	278	312
240	475	408	381	307	236	-	400	325	362
300	551	473	441	348	278	-	453	375	418
400	650	556	519	400	320	-	518	430	477
500	763	651	606	480	384	-	591	505	558
630	899	762	709	548	439	-	673	575	636

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

30°C
5°C
.2 K.m/W
).5 m

Copper conductor XLPE insulation Unarmoured Sheathed or unsheathed

Table 3	.17 Sir	igle Con	ductor	Cu XLPE	E Cables	s — Three	e Phase	Ratings	5 (A)
Conductor Size (mm ²)	000	8	80	\bigcirc			SH I		
1	21	18	18	17	13	9	19	19	24
1.5	28	23	22	20	17	11	24	24	29
2.5	39	33	31	28	22	15	33	33	41
4	51	44	41	36	29	21	43	43	52
6	65	55	52	46	37	26	54	54	64
10	89	76	72	62	50	35	72	72	85
16	119	101	95	79	64	47	125	92	108
25	161	138	129	107	85	64	162	121	141
35	198	169	158	132	106	79	193	147	169
50	243	207	194	157	125	-	229	174	203
70	310	264	246	201	161	-	280	217	248
9 5	385	328	306	242	194	-	335	261	295
120	451	384	358	287	230	-	381	304	342
150	519	443	413	325	260	-	428	342	383
185	616	515	479	369	295	-	484	388	442
240	726	616	573	439	352	-	560	456	510
300	843	713	662	516	413	-	630	525	591
400	989	832	772	587	470	-	715	596	670
500	1156	961	893	696	557	-	805	693	756
630	1353	1111	1032	785	628	-	902	778	877

Note:

The values in this table are	for typical New Zealand	installation conditions of:-
------------------------------	-------------------------	------------------------------

Ambient Air Temperature	30°C	Soil Thermal Resistivity	1.2 K.m/W
Soil Temperature	15°C	Depth of Burial	0.5 m

Aluminium conductor XLPE insulation Unarmoured Sheathed or unsheathed

Table 3	.18 Sin	igle Con	ductor A	AI XLPE	Cables	-Three	Phase F	Ratings	(A)
Conductor Size (mm ²)	000	8	800	\bigcirc					
16	92	78	74	62	50	36	97	71	85
25	124	107	100	83	66	50	125	93	110
35	154	131	122	102	83	62	150	113	131
50	188	161	150	122	98	-	178	135	157
70	241	205	191	156	125	-	217	169	193
95	298	255	238	188	151	-	260	203	229
120	350	298	278	223	178	-	296	236	265
150	403	344	320	252	201	-	332	266	296
185	470	402	373	287	230	-	377	303	343
240	564	482	448	343	275	-	438	356	397
300	656	559	519	405	323	-	495	412	460
400	776	659	613	466	373	-	567	473	525
500	912	773	717	560	448	-	646	556	598
630	1076	906	842	641	513	-	736	635	700

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

Copper conductors PVC insulation Armoured or unarmoured - (including Neutral Screened cables)

Table 3.19 Three & Four Conductor Cu PVC Cables									
– Three	– Three Phase Ratings (A)								
Conductor Size (mm ²)	\square				Ø				
1	15	14	13	10	10	7	15	15	
1.5	18	17	16	14	13	9	20	20	
2.5	26	25	23	19	18	13	28	28	
4	35	33	29	26	23	17	36	36	
6	46	42	38	34	30	22	46	46	
10	62	58	50	47	40	29	61	61	
16	82	78	66	62	54	39	106	80	
25	111	104	87	83	68	52	138	103	
35	137	128	107	103	86	64	165	125	
50	166	156	128	124	101	-	196	150	
70	211	196	162	157	130	-	241	187	
95	260	243	202	194	162	-	289	229	
120	302	282	230	226	185	-	330	261	
150	345	321	260	258	207	-	370	293	
185	397	369	300	295	241	-	417	334	
240	470	437	360	350	288	-	482	395	
300	538	499	-	-	-	-	542	444	
400	620	575	-	-	-	-	613	515	

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

Aluminium conductors PVC insulation Armoured or unarmoured - (including Neutral Screened cables)

Table 3.20 Three & Four Conductor AI PVC Cables								
– Three	Phase I	Ratings (A)					
Conductor Size (mm ²)	\bigcirc							
16	64	60	51	48	41	30	83	62
25	86	81	67	65	54	40	107	80
35	106	99	83	79	66	49	129	98
50	129	121	99	97	79	-	152	116
70	163	153	127	122	100	-	187	145
95	202	188	156	150	125	-	224	177
120	235	219	179	176	144	-	256	202
150	268	250	202	200	162	-	287	228
185	310	288	235	231	188	-	326	261
240	368	343	283	274	226	-	378	309
300	424	393	-	-	-	-	427	350
400	495	458	-	-	-	-	488	411

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

Copper conductors XLPE insulation Armoured or unarmoured - (including Neutral Screened cables)

Table 3.21 Three & Four Conductor Cu XLPE Cables									
– Three	– Three Phase Ratings (A)								
Conductor Size (mm ²)	\bigcirc	\otimes	$\overline{\bigcirc}$						
1	18	15	14	13	8	17	17		
1.5	22	21	18	17	10	21	21		
2.5	31	29	26	23	14	31	31		
4	42	39	33	31	20	40	40		
6	53	50	42	40	24	49	49		
10	73	68	58	54	34	67	67		
16	97	91	75	73	45	118	87		
25	131	122	100	98	62	153	114		
35	162	151	125	121	76	184	139		
50	198	185	150	147	-	218	166		
70	252	234	190	187	-	269	207		
95	311	289	230	231	-	323	249		
120	363	337	271	270	-	368	289		
150	415	385	305	308	-	412	325		
185	480	444	354	355	-	465	372		
240	569	527	425	421	-	539	440		
300	653	604	-	-	-	607	495		
400	754	695	-	-	-	685	561		

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

Aluminium conductors XLPE insulation Armoured or unarmoured - (including Neutral Screened cables)

Table 3.22 Three & Four Conductor AI XLPE Cables									
– Three	– Three Phase Ratings (A)								
Conductor Size (mm ²)	\square	0							
16	75	70	58	56	35	91	67		
25	102	95	78	76	47	119	89		
35	125	117	97	94	58	142	108		
50	154	143	116	114	-	170	128		
70	196	182	147	145	-	209	161		
95	242	224	178	179	-	250	194		
120	282	262	211	209	-	286	225		
150	322	299	238	240	-	320	253		
185	374	347	276	277	-	364	291		
240	446	413	333	330	-	423	345		
300	514	475	-	-	-	477	391		
400	601	554	-	-	-	546	446		

Note:

Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

Ambient Air Temperature	30°C
Soil Temperature	15°C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	0.5 m

VOLTAGE DROPS

Conductor Size	Conductor Temperature								
_	Single Phase Touching		Three Phase Trefoil		Three Phase Flat Touching				
(mm²)	75°C	90°C	75°C	90°C	75°C	90°C			
· ·		Со	pper Conductors	6					
1	51.6	54.1	44.7	46.8	44.7	46.8			
1.5	33.0	34.7	28.6	30.0	28.6	30.0			
2.5	18.0	18.9	15.6	16.4	15.6	16.4			
4	11.2	11.8	9.71	10.2	9.71	10.2			
6	7.50	7.87	6.49	6.81	6.49	6.81			
10	4.46	4.68	3.86	4.05	3.86	4.05			
16	2.81	2.95	2.43	2.55	2.43	2.55			
25	1.78	1.87	1.54	1.62	1.55	1.62			
35	1.29	1.35	1.12	1.17	1.12	1.18			
50	0.963	1.01	0.834	0.872	0.840	0.878			
70	0.680	0.710	0.589	0.615	0.597	0.623			
95	0.507	0.528	0.439	0.457	0.449	0.467			
120	0.415	0.431	0.359	0.373	0.371	0.385			
150	0.352	0.365	0.305	0.316	0.319	0.330			
185	0.302	0.311	0.261	0.269	0.277	0.285			
240	0.255	0.262	0.221	0.227	0.240	0.245			
300	0.229	0.233	0.198	0.202	0.219	0.222			
400	0.209	0.211	0.181	0.183	0.202	0.205			
500	0.194	0.196	0.168	0.170	0.191	0.193			
630	0.181	0.184	0.157	0.159	0.181	0.182			
		Alun	ninium Conducto	ors					
16	4.68	4.91	4.05	4.25	4.05	4.25			
25	2.95	3.08	2.55	2.67	2.55	2.67			
35	2.14	2.24	1.85	1.94	1.85	1.94			
50	1.58	1.65	1.37	1.43	1.37	1.44			
70	1.10	1.15	0.952	0.997	0.956	1.00			
95	0.804	0.840	0.696	0.727	0.702	0.733			
120	0.644	0.672	0.558	0.582	0.565	0.589			
150	0.535	0.557	0.463	0.482	0.472	0.491			
185	0.439	0.455	0.380	0.394	0.391	0.404			
240	0.352	0.363	0.305	0.314	0.319	0.327			
300	0.300	0.307	0.260	0.266	0.276	0.281			
400	0.256	0.261	0.222	0.226	0.240	0.243			
500	0.226	0.228	0.196	0.197	0.216	0.216			
630	0.202	0.204	0.175	0.177	0.197	0.198			

Notes:

1. Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

2. PVC (V-75, V90) maximum temperature is 75°C and XLPE (X-90) maximum temperature is 90°C.

VOLTAGE DROPS

	Iti Conductor C		Drops (mV/A.m)	
Conductor Size			Temperature		
3120	Single	Phase	Three	hase	
(mm²)	75°C	90°C	75°C	90°C	
		Copper Conductors			
1	51.6	54.1	44.7	46.8	
1.5	33.0	34.7	28.6	30.0	
2.5	18.0	18.9	15.6	16.4	
4	11.2	11.8	9.71	10.2	
6	7.50	7.85	6.49	6.80	
10	4.46	4.68	3.86	4.05	
16	2.81	2.95	2.43	2.55	
25	1.78	1.86	1.54	1.61	
35	1.28	1.35	1.11	1.17	
50	0.958	1.00	0.829	0.868	
70	0.673	0.703	0.583	0.609	
95	0.498	0.520	0.431	0.450	
120	0.405	0.423	0.351	0.366	
150	0.342	0.355	0.296	0.307	
185	0.290	0.299	0.251	0.259	
240	0.243	0.249	0.210	0.216	
300	0.215	0.219	0.186	0.190	
400	0.194	0.198	0.168	0.171	
		Aluminium Conductor	S		
16	4.67	4.90	4.04	4.24	
25	2.93	3.08	2.54	2.67	
35	2.13	2.23	1.84	1.93	
50	1.57	1.65	1.36	1.43	
70	1.09	1.15	0.948	0.993	
95	0.798	0.835	0.691	0.723	
120	0.638	0.666	0.552	0.577	
150	0.528	0.550	0.457	0.476	
185	0.431	0.448	0.373	0.388	
240	0.343	0.355	0.297	0.307	
300	0.290	0.298	0.251	0.258	
400	0.245	0.249	0.212	0.216	

Notes:

1. Content from AS/NZS 3008.1.2:2010 has been reproduced with the permission from Standards New Zealand under Copyright Licence 000926. Please see the Standard for full details.

2. PVC (V-75, V90) maximum temperature is 75°C and XLPE (X-90) maximum temperature is 90°C.

AC RESISTANCES

Conductor Size		Conductor 1	emperature	
(mm²)	45°C	60°C	75°C	90°C
	C	opper Conductors		L
1	23.3	24.5	25.8	27.0
1.5	14.9	15.7	16.5	17.3
2.5	8.14	8.57	9.01	9.45
4	5.06	5.33	5.61	5.88
6	3.38	3.56	3.75	3.93
10	2.01	2.12	2.23	2.33
16	1.26	1.33	1.40	1.47
25	0.799	0.842	0.884	0.927
35	0.576	0.607	0.638	0.668
50	0.426	0.448	0.471	0.494
70	0.295	0.311	0.327	0.342
95	0.213	0.225	0.236	0.247
120	0.170	0.179	0.188	0.197
150	0.138	0.145	0.153	0.160
185	0.111	0.117	0.123	0.129
240	0.0862	0.0905	0.0948	0.0991
300	0.0703	0.0736	0.0770	0.0803
400	0.0569	0.0595	0.0620	0.0646
500	0.0467	0.0487	0.0506	0.0525
630	0.0389	0.0404	0.0418	0.0432
	Alu	minium Conductors		
16	2.10	2.22	2.33	2.45
25	1.32	1.39	1.47	1.54
35	0.956	1.01	1.06	1.11
50	0.706	0.745	0.783	0.822
70	0.488	0.515	0.542	0.568
95	0.353	0.372	0.392	0.411
120	0.279	0.295	0.310	0.325
150	0.228	0.240	0.253	0.265
185	0.182	0.192	0.202	0.212
240	0.140	0.147	0.155	0.162
300	0.113	0.119	0.125	0.130
400	0.0890	0.0936	0.0981	0.103
500	0.0709	0.0744	0.0779	0.0813

Note:

AC RESISTANCES

Conductor		Conductor Temperature								
Size		Circular C	onductors		Shaped Conductors					
(mm²)	45°C	60°C	75°C	90°C	45°C	60°C	75°C	90°C		
Copper Conductors										
1	23.3	24.5	25.8	27.0	-	-	-	-		
1.5	14.9	15.7	16.5	17.3	-	-	-	-		
2.5	8.14	8.57	9.01	9.45	-	-	-	-		
4	5.06	5.33	5.61	5.88	-	-	-	-		
6	3.38	3.56	3.75	3.93	-	-	-	-		
10	2.01	2.12	2.23	2.33	-	-	-	-		
16	1.26	1.33	1.40	1.47	-	-	-	-		
25	0.799	0.842	0.884	0.927	0.799	0.842	0.884	0.927		
35	0.576	0.607	0.638	0.669	0.576	0.607	0.638	0.669		
50	0.426	0.449	0.471	0.494	0.426	0.448	0.471	0.494		
70	0.295	0.311	0.327	0.343	0.295	0.311	0.327	0.342		
95	0.214	0.225	0.236	0.248	0.213	0.224	0.236	0.247		
120	0.170	0.179	0.188	0.197	0.170	0.179	0.187	0.196		
150	0.139	0.146	0.153	0.160	0.138	0.145	0.153	0.160		
185	0.112	0.118	0.123	0.129	0.111	0.117	0.123	0.128		
240	0.0870	0.0912	0.0955	0.0998	0.0859	0.0902	0.0945	0.0988		
300	0.0712	0.0745	0.0778	0.0812	0.0698	0.0732	0.0766	0.0800		
400	0.0580	0.0605	0.0630	0.0656	0.0563	0.0589	0.0615	0.0641		
			Alum	inium Condu	ctors					
16	2.10	2.22	2.33	2.45	2.10	2.22	2.33	2.45		
25	1.32	1.39	1.47	1.54	1.32	1.39	1.47	1.54		
35	0.956	1.01	1.06	1.11	0.956	1.01	1.06	1.11		
50	0.706	0.745	0.784	0.822	0.706	0.745	0.783	0.822		
70	0.488	0.515	0.542	0.569	0.488	0.515	0.542	0.568		
95	0.353	0.373	0.392	0.411	0.353	0.372	0.392	0.411		
120	0.280	0.295	0.310	0.325	0.279	0.295	0.310	0.325		
150	0.228	0.241	0.253	0.265	0.228	0.240	0.253	0.265		
185	0.182	0.192	0.202	0.212	0.182	0.192	0.202	0.211		
240	0.140	0.148	0.155	0.162	0.139	0.147	0.154	0.162		
300	0.113	0.119	0.125	0.131	0.112	0.118	0.124	0.130		
400	0.0897	0.0943	0.0988	0.103	0.0886	0.0932	0.0978	0.102		

Note:

REACTANCES

Table 3.27 Reactances at 50 Hz of Single Core Cables (m $\Omega/m)$						
Conductor Size		Insulatio	n Material			
	Single Phase, or T	hree Phase Trefoil	Three Phase Flat Touching			
(mm²)	PVC	XLPE	PVC	XLPE		
1	0.168	0.166	0.184	0.181		
1.5	0.157	0.155	0.172	0.170		
2.5	0.143	0.141	0.159	0.156		
4	0.137	0.131	0.152	0.146		
6	0.128	0.123	0.143	0.138		
10	0.118	0.114	0.134	0.129		
16	0.111	0.106	0.126	0.122		
25	0.106	0.102	0.121	0.118		
35	0.101	0.0982	0.117	0.113		
50	0.0962	0.0924	0.111	0.108		
70	0.0917	0.0893	0.107	0.104		
95	0.0904	0.0868	0.106	0.102		
120	0.0870	0.0844	0.102	0.0996		
150	0.0868	0.0844	0.102	0.0996		
185	0.0862	0.0835	0.101	0.0988		
240	0.0847	0.0818	0.0999	0.0970		
300	0.0839	0.0809	0.0991	0.0961		
400	0.0829	0.0802	0.0982	0.0955		
500	0.0820	0.0796	0.0973	0.0948		
630	0.0800	0.0787	0.0952	0.0940		

Note:

REACTANCES

Table 3.28 Reactances at 50 Hz of Multicore Cables (m $\Omega/m)$							
Conductor Size		Insulation	n Material				
	Circular C	onductors	Shaped C	onductors			
(mm²)	PVC	XLPE	PVC	XLPE			
1	0.119	0.114	-	-			
1.5	0.111	0.107	-	-			
2.5	0.102	0.0988	-	-			
4	0.102	0.0930	-	-			
6	0.0967	0.0887	-	-			
10	0.0906	0.0840	-	-			
16	0.0861	0.0805	-	-			
25	0.0853	0.0808	0.0786	0.0744			
35	0.0826	0.0786	0.0761	0.0725			
50	0.0797	0.0751	0.0734	0.0692			
70	0.0770	0.0741	0.0710	0.0683			
95	0.0766	0.0725	0.0706	0.0668			
120	0.0743	0.0713	0.0685	0.0657			
150	0.0745	0.0718	0.0687	0.0662			
185	0.0744	0.0720	0.0686	0.0663			
240	0.0735	0.0709	0.0678	0.0653			
300	0.0732	0.0704	0.0675	0.0649			
400	0.0728	0.0702	0.0671	0.0647			

Note:

VOLTAGE DROP GRAPHS

This information seeks to provide a quick means of selecting the size of cable to comply with voltage drop requirements.

The range of graphs is intended to cover normal stock cables available from Nexans Olex.

Basis of Graphs

© Copyright Standards New Zealand 2012. Content in the graphs and current rating values are derived from AS/NZS 3008.1.2:2010 and has been reproduced or adapted with permission from Standards New Zealand under Copyright Licence 000926. Please refer to the complete Standard for full details available for purchase from Standards New Zealand at www.standards.co.nz.

New Zealand regulations allow a maximum voltage drop of 5% from the point of supply to anywhere in the installation.

The graphs have been drawn for a voltage drop of 2.5% with the standard New Zealand supply voltages. i.e. 5.75 volts for single phase 230 volt systems, or 10 volts for three phase 400 volt systems.

For installations involving mains, sub-mains and circuits, larger cable sizes may be necessary than these graphs show, to keep the voltage drop in the complete installation under the maximum allowed by the regulations.

The graphs are drawn to allow for the highest current with the cable installed under any of the standard installation conditions as per this section or the Nexans Olex New Zealand Handbook

It is important to check that the cable will carry the required maximum load under the particular conditions of the actual installation proposed.

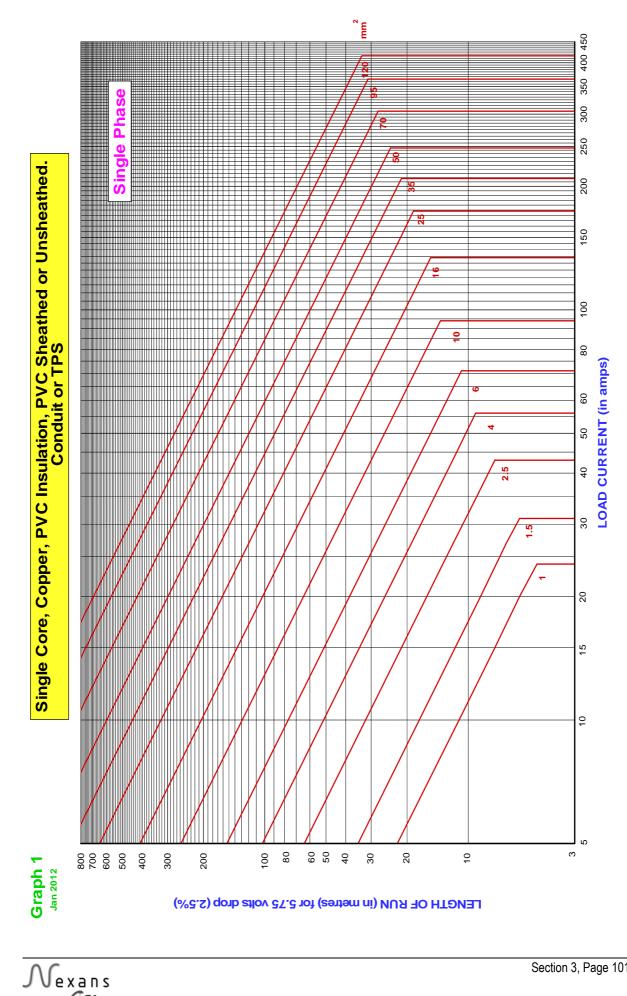
In cases where the load current is significantly less than the maximum for the cable, the temperature of the conductor will be less than the maximum allowed. Hence the actual voltage drop will be lower than that shown by the graphs.

Use of the Graphs

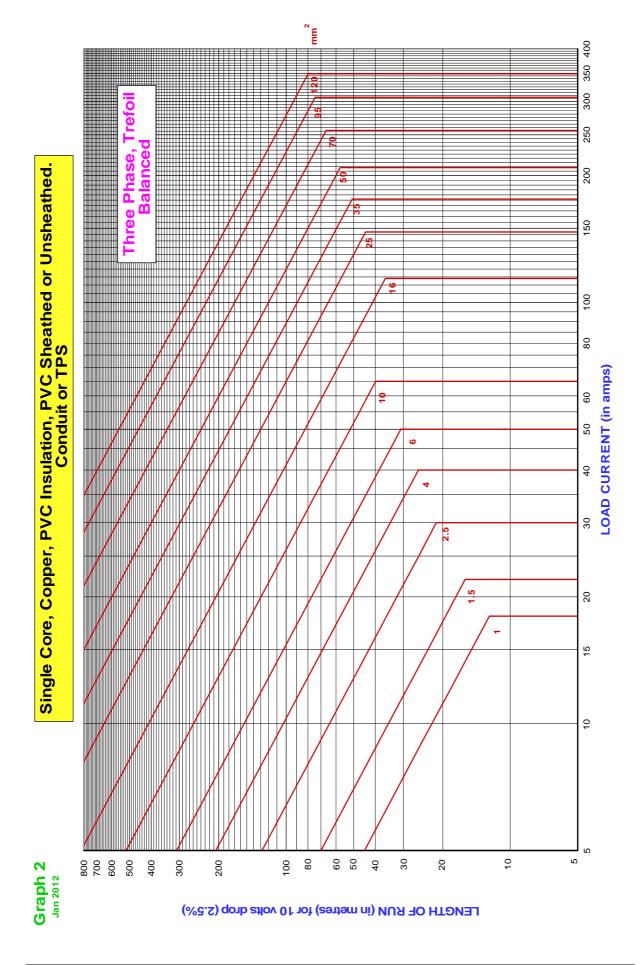
Assuming that the load current and length of run are known.

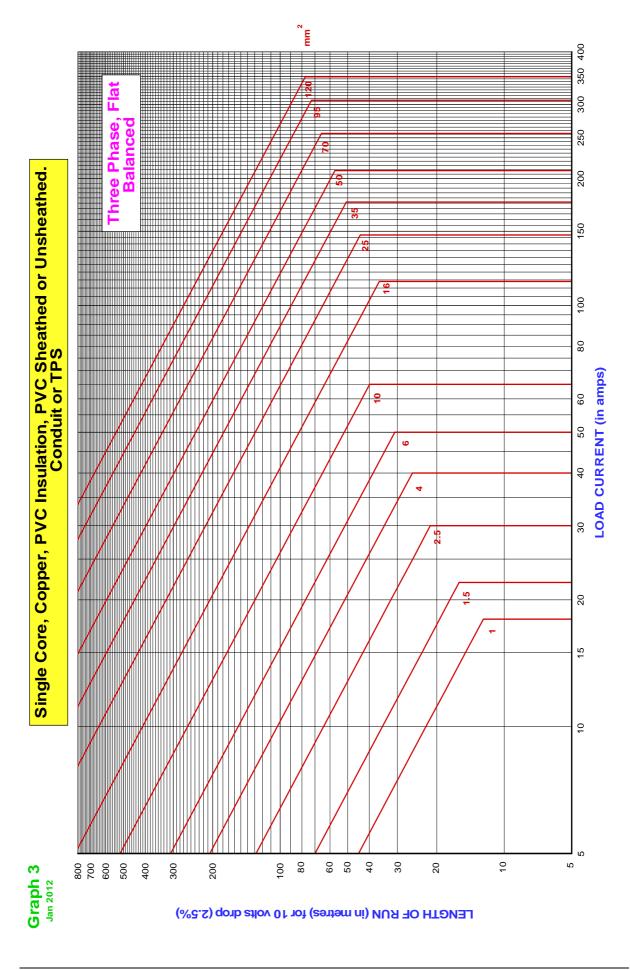
- 1. Select the graph appropriate for the cable under consideration, whether single phase or three phase, and for single core cables whether laid in trefoil or flat configuration.
- 2. Locate the intersecting point on the graph for the required values of load current and length of run.
- 3. For this point read the conductor size indicated for the graph line either on or above the point.
- 4. Check that the required load current is within the maximum for the cable size under the intended installation conditions, using either this section, the Nexans Olex New Zealand Handbook or AS/NZS 3008.1.2.

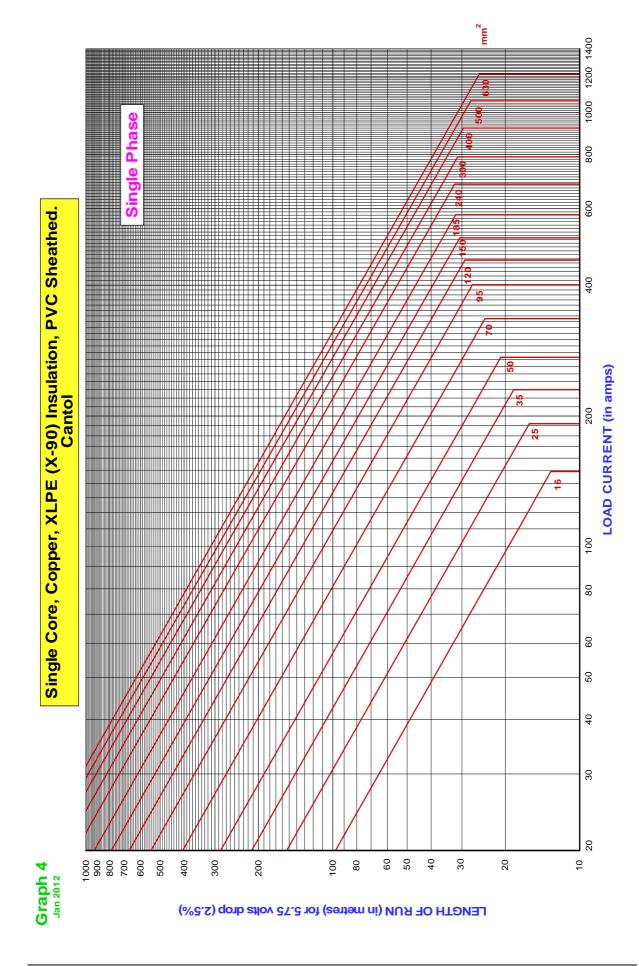
Disclaimer

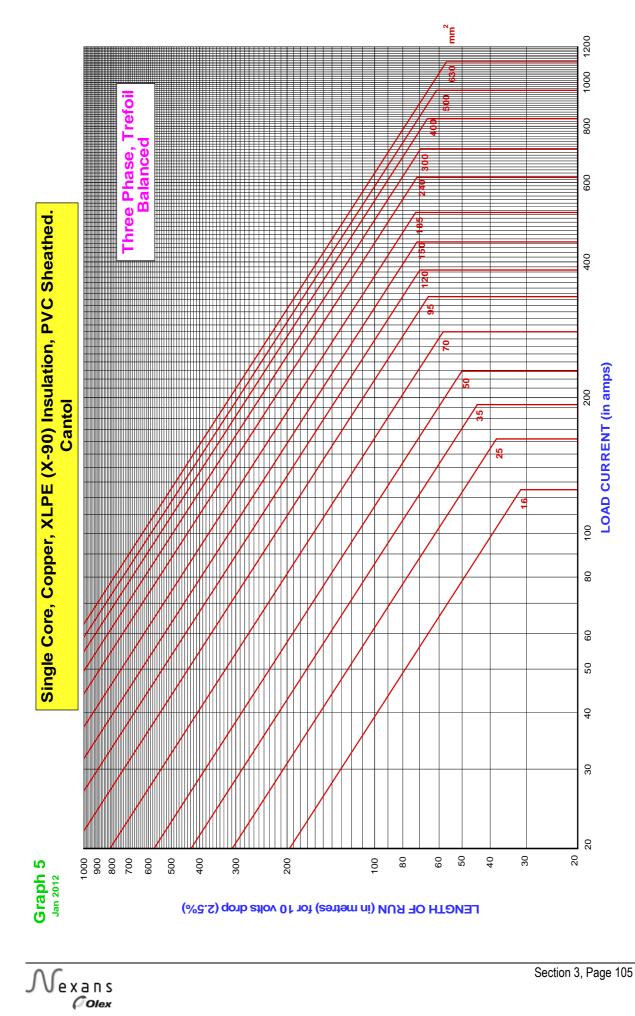

Nexans Olex New Zealand Limited has taken every precaution to ensure that the information contained in these graphs is in line with the requirements of the appropriate New Zealand Standards and correct electrical practice. However, we accept no liability of any kind with respect to the information presented here.

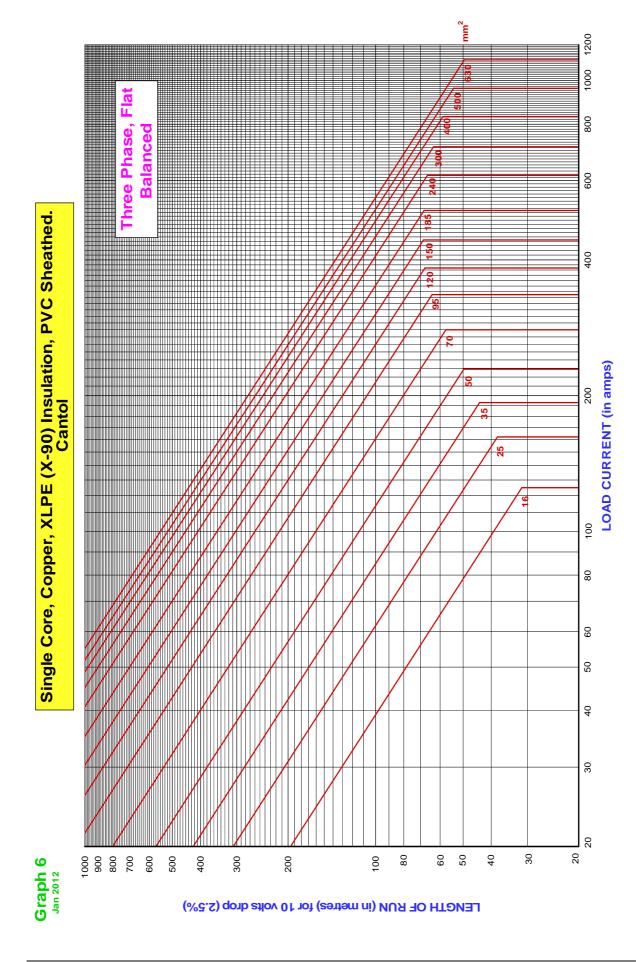
It is the responsibility of the Electrician signing the Certificate of Compliance to ensure that all the requirements of the Wiring Regulations are met.


List of Graphs

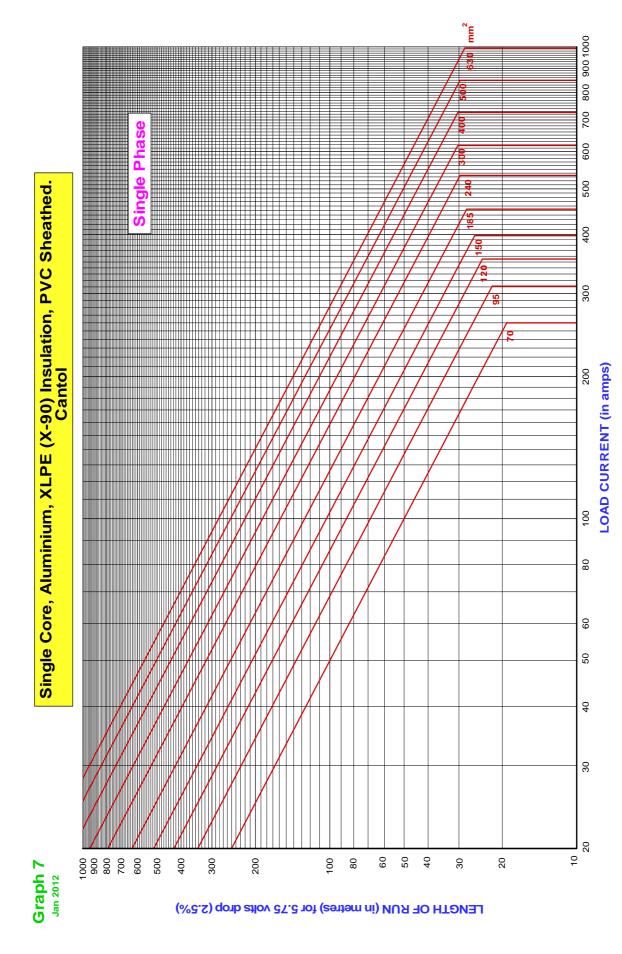

Graph 1	Single core, Copper, PVC insulation, PVC sheathed or unsheathed. Conduit or TPS.
	Single phase, 1 mm ² to 120 mm ²
Graph 2	Single core, Copper, PVC insulation, PVC sheathed or unsheathed. Conduit or TPS.
	Three phase, Trefoil, Balanced, 1 mm ² to 120 mm ²
Graph 3	Single core, Copper, PVC insulation, PVC sheathed or unsheathed.
	Conduit or TPS.
	Three phase, Flat, Balanced, 1 mm ² to 120 mm ²
Graph 4	Single core, Copper, XLPE (X-90) insulation, PVC sheathed.
	Cantol.
	Single phase, 16 mm ² to 630 mm ²
Graph 5	Single core, Copper, XLPE (X-90) insulation, PVC sheathed.
	Cantol.
	Three phase, Trefoil, Balanced, 16 mm ² to 630 mm ²
Graph 6	Single core, Copper, XLPE (X-90) insulation, PVC sheathed.
	Cantol.
	Three phase, Flat, Balanced, 16 mm ² to 630 mm ²
Graph 7	Single core, Aluminium, XLPE (X-90) insulation, PVC sheathed.
	Cantol.
One with 0	Single phase, 70 mm ² to 630 mm ²
Graph 8	Single core, Aluminium, XLPE (X-90) insulation, PVC sheathed.
	Cantol.
Cranh 0	Three phase, Trefoil, Balanced, 70 mm ² to 630 mm ²
Graph 9	Single core, Aluminium, XLPE (X-90) insulation, PVC sheathed. Cantol.
	Three phase, Flat, Balanced, 70 mm ² to 630 mm ²
Graph 10	Two core, Copper, PVC insulation, armoured or unarmoured or neutral screened, PVC sheathed.
	TPS or Remolex.
	Single phase, 1 mm ² to 50 mm ²
Graph 11	Three or four core, Copper, PVC insulation, armoured or unarmoured or neutral
	screened, PVC sheathed.
	TPS or Remolex.
	Three phase, Balanced, 1.5 mm ² to 35 mm ²
Graph 12	Three or four core, Copper, XLPE (X-90) insulation, armoured or unarmoured or
	neutral screened, PVC sheathed.
	Cempex.
	Three phase, Balanced, 6 mm ² to 240 mm ²
Graph 13	Three or four core, Aluminium, XLPE (X-90) insulation, armoured or
	unarmoured or neutral screened, PVC sheathed.
	URD.
	Three phase, Balanced, 35 mm ² to 240 mm ²

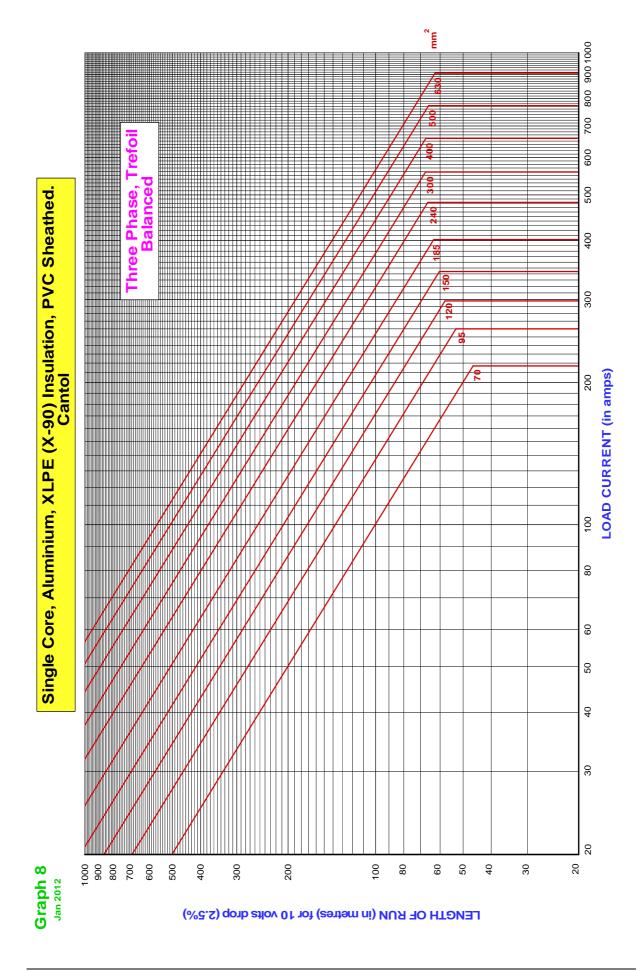

Olex

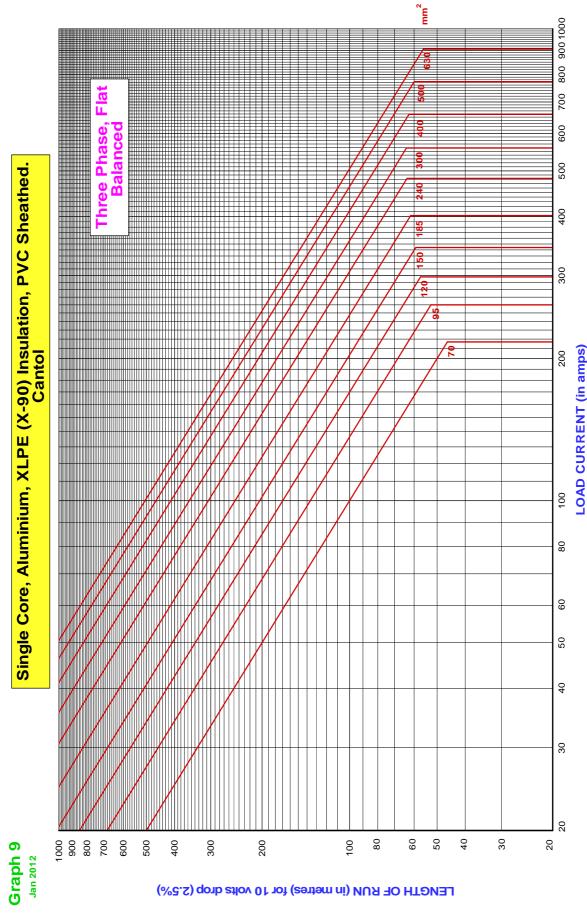




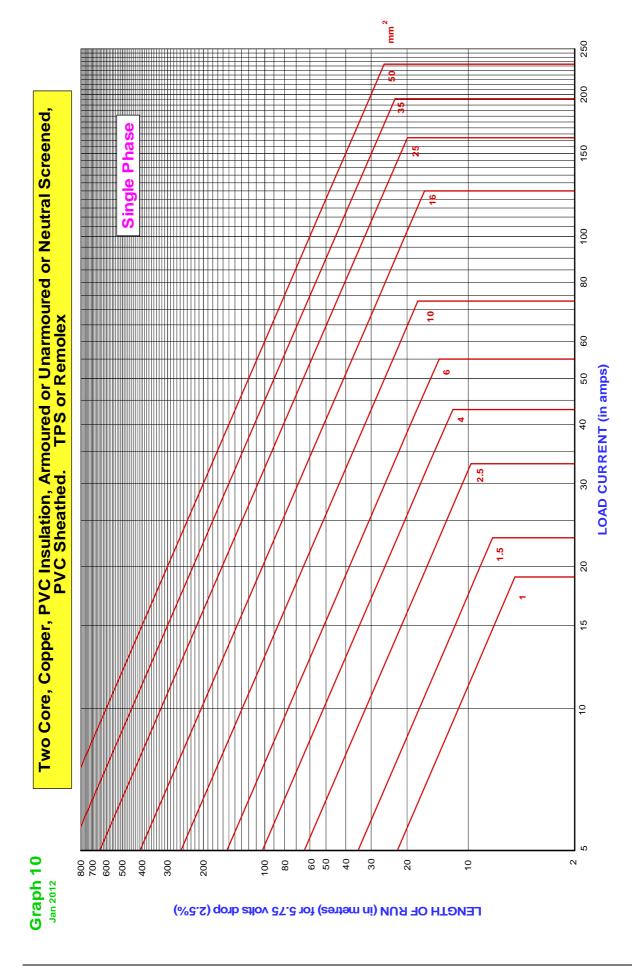
Nexans

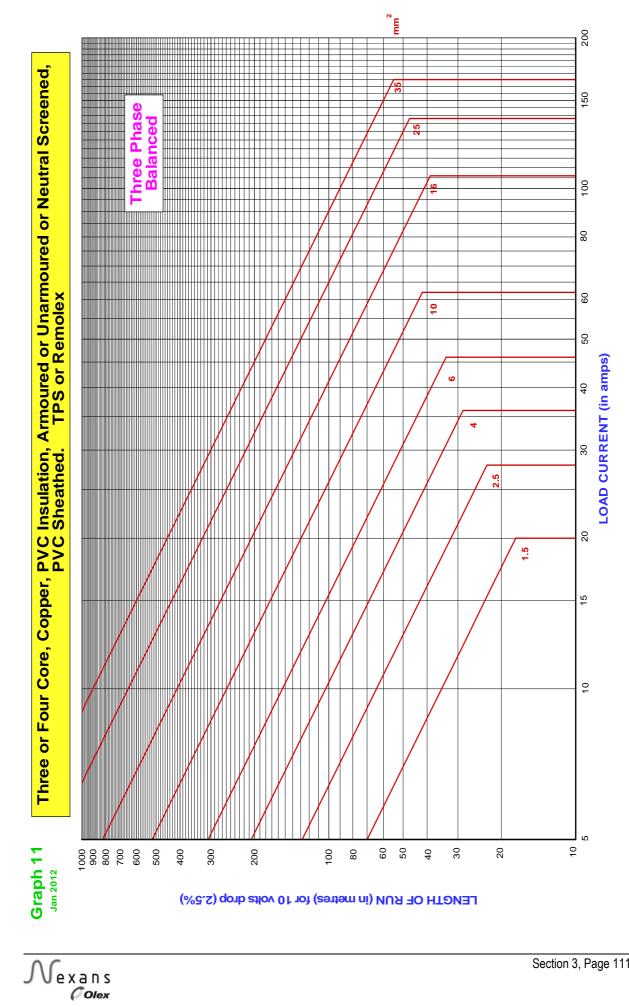

Olex

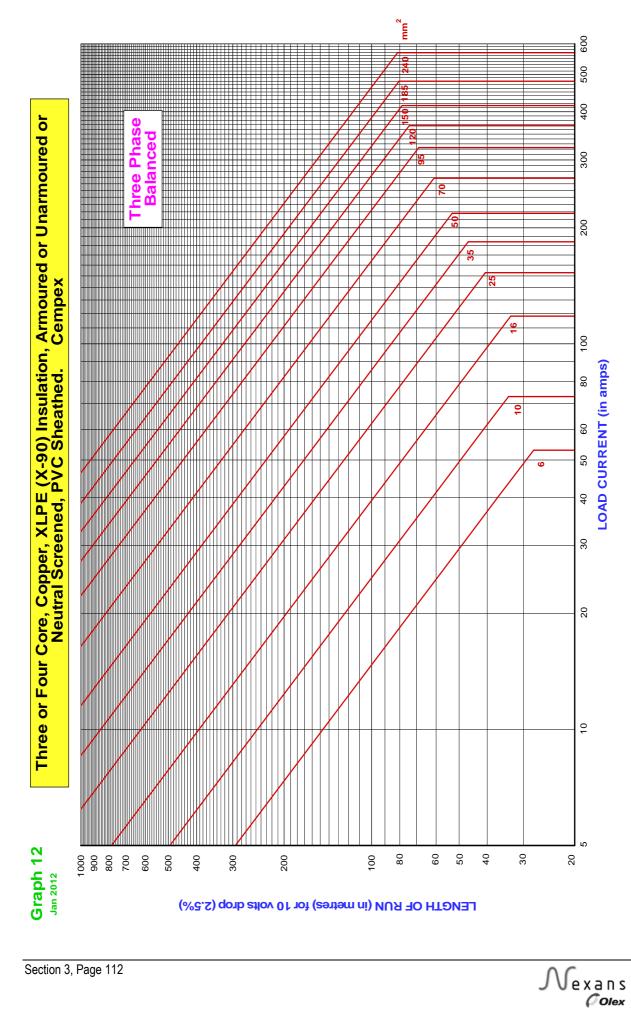


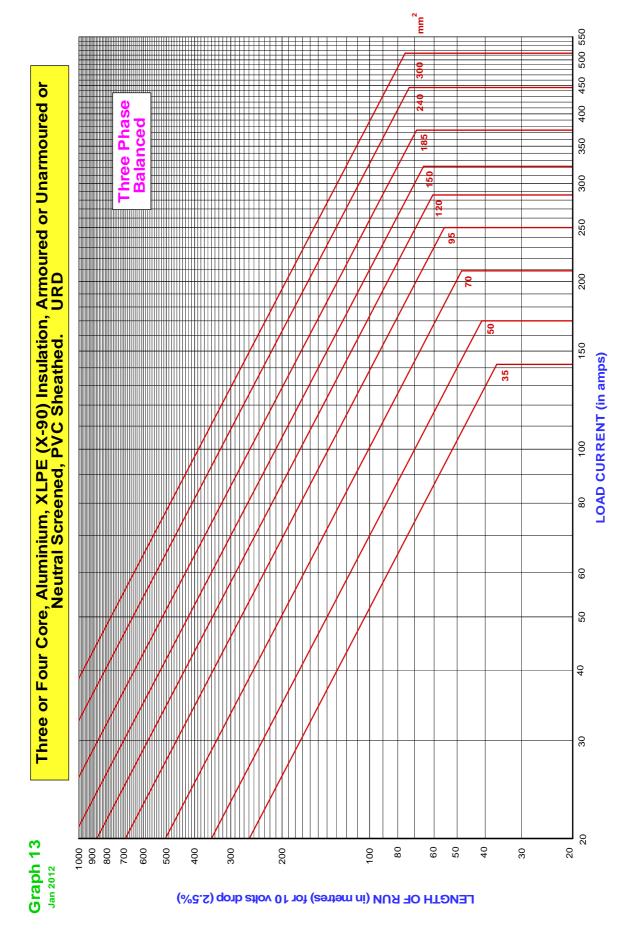

Nexans *Çolex*

Mexans


Olex




Nexans


Olex

Nexans Øolex

Nexans

Olex

Section Three

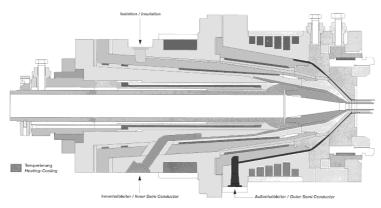
SECTION FOUR – MEDIUM VOLTAGE TR-XLPE CABLES

	PAGE
Explanatory Information	2-13
Construction	2
Screen Designs	4
Testing	5
Test Voltage Levels	6
Installation Tests	7
Current Ratings	9
Rating Factors	10
Product Sheets	12-55
Single Core Cu 11 kV Cables - 3 kA for 1 s Wire Screens	12
Single Core Cu 11 kV Cables - 10 kA for 1 s Wire Screens	14
Single Core AI 11 kV Cables - 3 kA for 1 s Wire Screens	16
Single Core AI 11 kV Cables - 10 kA for 1 s Wire Screens	18
Three Core Cu 11 kV Cables - 3 kA for 1 s Wire Screens	20
Three Core Cu 11 kV Cables - 10 kA for 1 s Wire Screens	22
Three Core AI 11 kV Cables - 3 kA for 1 s Wire Screens	24
Three Core AI 11 kV Cables - 10 kA for 1 s Wire Screens	26
Single Core Cu 22 kV Cables - 3 kA for 1 s Wire Screens	28
Single Core Cu 22 kV Cables - 10 kA for 1 s Wire Screens	30
Single Core AI 22 kV Cables - 3 kA for 1 s Wire Screens	32
Single Core AI 22 kV Cables - 10 kA for 1 s Wire Screens	34
Three Core Cu 22 kV Cables - 3 kA for 1 s Wire Screens	36
Three Core Cu 22 kV Cables - 10 kA for 1 s Wire Screens	38
Three Core AI 22 kV Cables - 3 kA for 1 s Wire Screens	40
Three Core AI 22 kV Cables - 10 kA for 1 s Wire Screens	42
Single Core Cu 33 kV Cables - 3 kA for 1 s Wire Screens	44
Single Core Cu 33 kV Cables - 10 kA for 1 s Wire Screens	46
Single Core AI 33 kV Cables - 3 kA for 1 s Wire Screens	48
Single Core AI 33 kV Cables - 10 kA for 1 s Wire Screens	50
Three Core Cu 33 kV Cables	52
Three Core AI 33 kV Cables	54
Notes	56

CONSTRUCTION

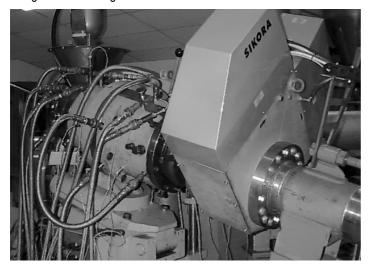
Nexans Olex Medium Voltage TR-XLPE cables are designed in accordance with AS/NZS 1429.1:2000 and specific customer requirements where applicable to provide optimum performance for the end application.

The AS/NZS 1429.1:2000 is compatible with, and in some instances exceeds, the requirements of the international standard IEC 60502.2. AS/NZS 1429.1 is also compatible with (UK) BS 6622 and (US) AEIC CS8 and ICEA S-93-639/NEMA WC74.


Component Detail

Conductor

Conductors are made of either copper or aluminium to AS/NZS 1125. To assist in producing a smooth circular profile at the interface between the conductor screen and the insulation, compacted stranded conductors are used.


Insulation and Semiconductive Screens

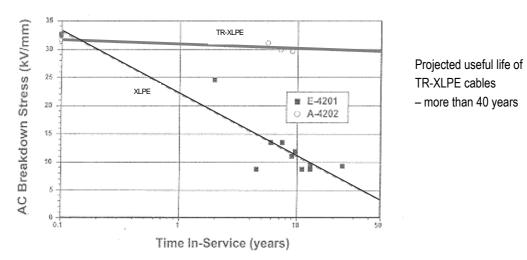
All Nexans Olex Medium Voltage TR-XLPE insulated cables are produced under clean room conditions, using the triple extrusion process in which the conductor screen, insulation and insulation screen are extruded simultaneously through a single extrusion head. The surface of the insulation is never exposed to the atmosphere or to any material other than the adjacent semiconductive screens, ensuring that the interfaces between the materials are completely free of voids and contamination.

Cross sectional view of a Triple Extrusion Head

A sophisticated dimension control device uses X-Rays which are fired through the three layers of polymer to accurately measure the individual layer thicknesses; this ensures that the dimensions of all layers are constant and concentric through the entire length of the cable.

EX-RAY-800 Dimensional Controller

The cross-linking process is carried out in a totally water-free environment, using inert gas rather than steam as the curing medium. This dry-cure process ensures a high integrity insulation and leads to excellent electrical performance.


CONSTRUCTION (CONT.)

Insulation and Semiconductive Screens (cont.)

The functional components of this triple layer are:

1. Conductor screen, a semiconductive cross-linked polymeric material applied over the conductor and bonded to the insulation. This provides a smooth, circular interface between the conductor and insulation and eliminates stress concentrations.

2. Insulation, a clean, low density, high molecular weight cross-linked polyethylene. A tree-retardant grade, which has shown improved performance in accelerated ageing tests, is used. This leads to superior long term reliability.

3. Insulation screen, a layer of semiconductive cross-linked polymeric material which adheres firmly to the insulation, yet remains readily strippable by hand for jointing and terminating.

Metal Screen

A screen of plain annealed copper wires is helically applied over the semiconductive insulation screen, ie, over the core of a single core cable or each core of a three core cable.

This screen acts as a return path for capacitive charging current and induced circulating currents under normal operating conditions. The screen will also carry short circuit current in the event of an electrical fault in the circuit.

Core Assembly (Three Core Cable)

The cores are laid up and the interstices filled with a non-hygroscopic material to achieve a circular cable cross section. The laid up core assembly is bound with helically applied non-hygroscopic tapes.

Separation Sheath and Armour (Three Core Cable)

In three core armoured cables, a separation sheath of PVC is extruded over the core assembly followed by a layer of helically applied galvanised mild steel wires.

Outer Sheath

A sheath of PVC, or a dual sheath of PVC/HDPE, is extruded over the metal screen of a single core cable, or over the core assembly or steel wire armour of three core cables.

Alternative protective coverings may be applied depending on the environment in which the cable is installed, eg, LLDPE, MDPE, HDPE, Megolon.

SCREEN DESIGNS

The standard range of Nexans Olex Medium Voltage TR-XLPE cables rated up to and including 33 kV incorporates copper wire screens based on fault levels of either 3 kA or 10 kA for 1 second. If either of the standard screen designs does not suit a particular installation, the screen constructions can be tailored in size to meet the specific fault requirements of any operating system.

Wire Screen Cross Sectional Areas

In the case of three core cables which have screens around each individual core, the total screen cross sectional area is spread evenly over the three cores.

There are several other factors which can override the above criteria. Firstly, the screens are designed so that the average gap between the wires does not exceed 4 mm. This results in the screen area being increased above that required for the required fault level in certain cases. Secondly, the screen area is limited to a value so that its fault rating does not exceed that of the conductor. In some cases, the smaller cables in a range have fault levels of less than either 3 kA or 10 kA for 1 second respectively.

Screen Short Circuit Ratings

The screen short circuit ratings are calculated in accordance with formulae given in IEC 60949. Based on AS/NZS 1429.1 a starting temperature of 80°C and a final temperature of 250°C are used. The formulae are based on adiabatic conditions ie, no dissipation of heat during the short circuit.

The fault rating Isc of a copper wire screen of a given cross sectional area can be calculated for any duration from the formula :

Isc =
$$\frac{148.6 * S}{\sqrt{t}}$$
 (A)

where S = Screen Area (mm^2) and t = Fault Duration (s).

Conversely, the screen area required for a given fault rating can be calculated as follows:

$$S = \frac{Isc * \sqrt{t}}{148.6}$$
 (mm²)

For convenience, fault ratings for durations of 1 second are often quoted and this simplifies calculations since $\sqrt{t} = 1$ and this term disappears from the formulae.

TESTING

Testing of Nexans Olex Medium Voltage TR-XLPE cables is carried out in accordance with AS/NZS 1429.1:2000. The tests performed are :

Routine tests* - "tests made by the manufacturer on all completed cable to demonstrate the integrity of the cable."

Sample tests* - "tests made by the manufacturer on samples of completed cable, or components taken from a completed cable, at a specified frequency so as to verify that the finished product meets the design specification."

Type tests# - "tests made by a manufacturer before supplying commercially a type of cable in order to demonstrate satisfactory performance characteristics to meet the intended application. These tests are of such a nature that, after they have been made, they need not be repeated unless changes are made in the cable materials, design, or method of manufacture, which might change the performance characteristics."

*All routine and sample tests are performed in the factory.

Type tests are carried out in Nexans Olex's plant in Tottenham, Melbourne, which includes a separate laboratory dedicated to EHV cable testing. The extensive facilities include high voltage test equipment which can perform partial discharge measurements at voltages up to 300 kV, high voltage break-down tests to 600 kV, cyclic ageing tests and impulse withstand tests. The impulse test generator has been specifically built for cable and accessory testing and is the largest in the southern hemisphere, capable of impulses up to 1.2 MV. This allows all type tests to AS/NZS and other national standards to be performed.

Tests Performed on Cables							
Routine Tests	Sample Tests	Type Tests					
Spark test on sheath.	Thicknesses of extruded components.	Insulation resistance at 20°C and 90°C.					
Conductor examination and resistance.	Screen and armour wire diameters, and screen area.	Elongation at rupture of conductor screen.					
Partial discharge tes.t	Heat shock test (PVC sheaths only).	Pressure test (PVC sheaths only.)					
High voltage a.c. test for 5 min.	Insulation shrinkage.	Loss of mass (PVC sheaths only).					
High voltage a.c. test for 1 min on separation sheath (three core armoured cable only).	Insulation concentricity.	Volume resistivity of conductor and insulation screen.s					
	Conductor screen projections/irregularities.	Mechanical tests (before and after ageing) of insulation and sheaths.					
	Determination of voids and contaminants.	Partial discharge test after bending.					
	Hot set test.	Impulse withstand test followed by high voltage a.c. test for 15 min.					
	Insulation screen strippability and adhesion.	Partial discharge test after heat cycling.					
		DDF (tan δ) as a function of temperature.					
		High voltage a.c. test for 4 h.					
		Compatabilitry test for separation sheath (if any) and oversheath.					

TEST VOLTAGE LEVELS

Voltage Withstand Tests									
Rated Voltage	Impulse	Type Tests		Routine Test					
		High Voltage 15 min 50 Hz (after impulse test)	High Voltage 4 h 50 Hz	High Voltage 5 min 50 Hz					
(kV)	(kV)	(kV)	(kV)	(kV)					
3.8/6.6	60	12.5	15	12.5					
6.35/11	95	21	25	21					
12.7/22	150	42	50	42					
19/33	200	63	75	63					

Partial Discharge Voltage Levels								
Rated Voltage	Permitted Ma	Permitted Maximum Discharge						
	20 pC at 200 percent Uo	5 pC at 150 percent Uo						
(kV)	(kV)	(kV)						
3.8/6.6	7.6	5.7						
6.35/11	13	10						
12.7/22	25	19						
19/33	38	29						

INSTALLATION TESTS

General

After the cable has been installed and prior to commencing terminating or jointing, it is desirable to carry out checks to establish that the cable has not been damaged during the installation process, namely a Sheath Integrity Test and an Insulation Resistance Test of Primary Insulation

After completion of the tests, if the terminating or jointing is not being commenced straight away, the cable ends should be resealed with heat shrinkable end caps or similar to prevent the ingress of moisture.

Nexans Olex New Zealand Recommendations for Tests After Complete Installation of TR-XLPE Medium Voltage Cables

Advice Concerning Tests After Installation

If a test is carried out after installation, please note that the test is to detect defects caused during installation. After installation, the test is applied to the cable and accessories.

High Voltage D.C. Test After Installation

The D.C. testing of the primary insulation is not recommended. There are two important reasons for not using a High Voltage DC Test.

1. The DC field in the cable and accessories applies different electric stresses (both in magnitude and in physical location) to an AC field, so much so, that it is considered to be a poor process to find faults.

2. The application of High Voltage DC leads to premature failure of aged and "wet" primary insulation. This has been proven in the Laboratory and has been proven repeatedly in the field.

Safety Requirements

As the voltages used in these tests are potentially lethal, appropriate safety measures must be employed to ensure that the safety of all people involved in the testing process is not compromised.

Cable ends to be isolated shall be disconnected from the supply and protected from contact to supply, or ground, or accidental contact. Safety measures shall include, and shall not necessarily be limited to, earthing of cable under test prior to and after test voltages are applied, erection of safety barriers with warning signs, and an open communication channel between testing personnel.

The testing guidelines outlined in this document are Nexans Olex's recommendations only, and Nexans Olex cannot be held responsible for ensuring the safe implementation of these recommendations.

Sheath Integrity Test

A sheath integrity test (eg, 1000 V minimum insulation resistance tester) applied between the outer-most metallic layer and earth can identify after-installation damage to the non-metallic outer sheath.

The measured value should be read after application of the voltage for 1 minute. Ideally the measured value should be corrected for temperature to a standard value at 20°C if correction factors are available. A rough guide is that the insulation resistance decreases to one half of the value for a 10°C rise in temperature. The cable temperature should be recorded along with the measured values.

Measured values of Insulation Resistance for the sheath should be greater than calculated values. Calculated values for new cable range from 1.5 M Ω /km to 4.0 M Ω /km @ 20°C for PVC sheaths and from 120 M Ω /km to 300 M Ω /km @ 20°C for PE sheaths. Values are highest for small cables and thick sheaths and lowest for large cables and thin sheaths (factory tests show that measured values are up to an order of magnitude greater than the calculated values).

Earth the screens after an Insulation Resistance Test on a sheath for at least 5 minutes before handling or performing other tests.

INSTALLATION TESTS (CONT.)

Insulation Resistance Test of Primary Insulation

DC voltages up to 5 kV, used when performing Insulation Resistance Tests on Primary Insulation, are not considered to be a "High voltage DC test".

An Insulation Resistance Test of the Primary Insulation should be carried out with an insulation resistance tester, with a minimum DC voltage of 2.5 kV for 1.9/3.3 kV cables or 5 kV for cables above 1.9/3.3 kV and up to 19/33 kV. The insulation test should be carried out in the "Guarded Mode" and the instrument should have a minimum full-scale range of 500 Gohms. Guarding should be applied at both ends and a spare core used for the connection lead to the guard at the far end. Any conductor or cable core used as a guard lead must have a resistance to ground of greater than 10 kohms. The measured value should be read after application of the voltage for 1 minute. Ideally the measured value should be corrected for temperature to a standard value at 20°C if correction factors are available. A rough guide is that the insulation resistance decreases to one half of the value for a 10°C rise in temperature. The cable temperature should be recorded along with the measured values.

Measured values of insulation resistance for the primary insulation should be greater than calculated values. Calculated values for new cable range from 2,400 M Ω /km to 18,000 M Ω /km at 20°C. Values are highest for small conductors and higher voltages and lowest for large conductors and lower voltages (factory tests show that measured values are up to an order of magnitude greater than the calculated values).

This test should be performed prior to any high voltage tests. Short the conductors to the screens after an Insulation Resistance Test on Primary Insulation for at least 10 minutes before handling or performing other tests.

If the instrument used for the above insulation resistance testing is a "Megger," Type BM 25, or equivalent, then the two following tests should be considered.

1. A 10 minute Polarisation Index Test - this test is commonly used as a replacement for the standard insulation resistance test.

2. A 5 Minute Step Voltage Test - the test should use five equal steps up to the maximum test voltage of 2.5 kV for 1.9/3.3 kV cables or 5 kV for cables greater than 1.9/3.3 kV up to 19/33 kV. This test is becoming increasingly used on cables of 6.35/11 kV and greater.

Both the above tests can be carried out automatically with the Megger, BM 25 unit and guarding should be applied at both ends as above.

High Voltage A.C. Test After Installation

An A.C. voltage test at power frequency should be applied for 24 hours with the normal operating voltage of the system to the primary insulation.

Some customers have objected to a 24 hour test at only the operating voltage of the cable and would prefer a test using a higher voltage for a shorter time. This can be achieved by a Very Low Frequency (VLF) HV AC Test, and the equipment now exists for hire in New Zealand to perform this. The VLF HV AC Test is becoming recognised throughout the world as a replacement test for the old HV DC Test or the 24 hour AC test at normal operating voltage, although not many standards have details in them at this point in time. VLF Tests are carried out at a frequency in the band of 0.1 to 0.02 Hz. The VLF Test Set must be of adequate power to test the measured cable capacitance at the frequency chosen. The suggested maximum VLF test voltage for new cable is between 2.7 and 3.0 times the cable operating voltage (Uo), for a minimum of 15 minutes. Where possible, a 30 minute testing time is now recommended as international research has shown this to give a higher confidence. Refer to the test procedure of IEEE-400-2.

For existing or aged cables being recommissioned after repair or alterations, the VLF Test Voltage should be a maximum of 2.3 times the cable operating voltage (Uo), for 15 minutes.

Documentation

The values obtained in the above tests should be recorded in a cable log so that they are available for comparison purposes in the future.

CURRENT RATINGS

The continuous current ratings given in this publication have been calculated in accordance with the International Electrotechnical Commission Publication No. IEC 60287 - "Calculation of the Continuous Current Rating of Cables (100% Load factor)", based on the following environmental conditions: Ambient Air Temperature, 30°C; Ambient Soil Temperature, 15°C; Soil Thermal Resistivity, 1.2 K.m/W; Depth of burial, 1.0 m; and Screens bonded both ends.

In all cases, the ratings given are the single circuit ratings corresponding to continuous loading at the maximum conductor temperature of 90°C. Where the conditions vary from those on which the ratings are based, rating factors from Tables 4.1 to 4.4 (Section 4 Medium Voltage TR-XLPE Cables) need to be applied.

Methods of Installation

The methods of installation for which the ratings are applicable are shown graphically in Figure 2.1 (Section 2 General Technical Information).

Groups of Circuits

For groups of circuits unenclosed in air, the spacings and arrangements which need to be maintained to prevent derating are given in Figure 2.2 (Section 2 General Technical Information).

Where a number of circuits are installed in close proximity in such a way that they are not thermally independent, the appropriate rating factors from Tables 4.5, 4.6, (Section 4 Medium Voltage TR-XLPE Cables) and 2.1, 2.2 (Section 2 General Technical Information) need to be applied.

Cables in Parallel

For cables operated in parallel, each parallel leg is regarded as a separate circuit for current rating purposes and the appropriate rating factors for grouping are applicable. Refer also to Figure 2.3 (Section 2 General Technical Information) for the arrangements of single core cables so as to ensure equal current sharing between parallel legs of the same phase.

Bonding of Screens

The current ratings given for single core cables assume that the copper wire screens are solidly bonded to earth at both ends. Solid bonding can result in a reduction in current ratings on larger cables due to the heating effect of circulating currents induced in the screen. This loss can be minimised, either in short runs of cable, by earthing at one end only (single point bonding) which results in a standing voltage proportional to the conductor current and the length of run being induced on the screen and in long runs of cable, by dividing the route into tri-sections and transposing or "crossbonding" the screens at every joint position in a tri-section so that the e.m.f.'s induced by the three phases cancel one another.

When these methods of bonding are employed, higher current ratings may be used, however attention must be paid to the safety aspects with respect to the induced standing voltages. This places a limitation on the length of circuit for which single point bonding can be used.

Generally it is only considered practical to use special cross-bonding arrangements on transmission class cables (66 kV and above) as the benefits of the higher current ratings are outweighed by the costs of the extra equipment required.

Emergency Ratings

TR-XLPE insulated cables can operate under emergency conditions with a conductor temperature of 130°C for periods of up to 36 hours, not more than three times per year. In practice, however, due to the difficulty in ensuring compatibility with terminations and the high volume expansion of TR-XLPE above 100°C, a limit of 105°C for emergency rating is specified in AS/NZS 1429.1. The 105°C emergency limit represents the following approximate percentage increase over the normal continuous ratings:

Cables in air: +12%

Cables in ground (laid direct or in ducts): +9%.

MEDIUM VOLTAGE RATING FACTORS

Table 4.1 Air Temperature Variation										
		Air Temperature (°C)								
	15	20	25	30	35	40	45	50	55	60
Rating Factor	1.12	1.08	1.04	1.00	0.96	0.91	0.87	0.82	0.76	0.71

Table 4.2 Soil Temperature Variation										
		Soil Temperature (°C)								
	0	5	10	15	20	25	30	35	40	45
Rating Factor	1.10	1.06	1.03	1.00	0.97	0.93	0.89	0.86	0.82	0.77

Table 4.3 Depth of Burial Variation

Table 4.6 Depth of Burlar Variation								
Depth of Burial (m)								
	Up to 300 mm ²	Over 300 mm ²						
0.8	1.02	1.03	1.01	1.01				
1.0	1.00	1.0	1.00	1.00				
1.25	0.98	0.98	0.98	0.98				
1.5	0.97	0.96	0.96	0.97				
1.75	0.96	0.94	0.95	0.97				
2.0	0.94	0.92	0.94	0.96				
2.5	0.93	0.91	0.92	0.95				
3.0 (or more)	0.92	0.89	0.90	0.94				

Table 4.4 Soil	Table 4.4 Soil Thermal Resistivity Variation								
Soil Thermal Resistivity (K.m/W)									
0.8	1.16	1.12	1.09	1.07					
0.9	1.11	1.09	1.06	1.05					
1.0	1.07	1.06	1.04	1.03					
1.2	1.00	1.00	1.00	1.00					
1.5	0.90	0.92	0.93	0.95					
2.0	0.79	0.82	0.85	0.87					
2.5	0.71	0.75	0.78	0.82					
3.0	0.65	0.69	0.73	0.77					

MEDIUM VOLTAGE RATING FACTORS (CONT.)

Table 4.5 Groups of Circuits Laid Direct											
No. of			Single Co	ore Cables	5		Multic	ore Cabl	es		
Circuits	spacin					OOO acing					
	Touc	hing		Spacii	ng (m)		Touching		Spaci	ng (m)	
	Trefoil	Flat	0.15	0.30	0.45	0.60		0.15	0.30	0.45	0.60
2	0.78	0.80	0.82	0.86	0.89	0.91	0.80	0.85	0.89	0.91	0.93
3	0.66	0.68	0.71	0.77	0.80	0.83	0.68	0.76	0.81	0.84	0.87
4	0.59	0.62	0.65	0.72	0.77	0.80	0.62	0.71	0.77	0.81	0.84
5	0.55	0.58	0.61	0.68	0.74	0.78	0.57	0.66	0.73	0.78	0.82
6	0.52	0.55	0.58	0.66	0.72	0.76	0.54	0.64	0.71	0.77	0.81
7	0.49	0.52	0.56	0.64	0.70	0.75	0.51	0.61	0.69	0.75	0.79
8	0.47	0.50	0.54	0.63	0.69	0.74	0.49	0.59	0.68	0.74	0.79
9	0.45	0.48	0.52	0.61	0.68	0.74	0.47	0.58	0.67	0.73	0.78
10	0.44	0.47	0.51	0.61	0.68	0.73	0.45	0.57	0.66	0.73	0.78
11	0.43	0.46	0.50	0.60	0.67	0.73	0.44	0.55	0.65	0.72	0.77
12	0.41	0.45	0.49	0.59	0.67	0.72	0.43	0.54	0.64	0.72	0.77

Table	Table 4.6 Groups of Circuits In Underground Ducts									
No. of Circuits			n Single-way D es in Multiway	Single Core	Cables in Single	e-way Ducts				
	Touching		Spacing (m)		Touching	Spaci	ng (m)			
		0.30	0.45	0.60		0.45	0.60			
2	0.88	0.91	0.93	0.94	0.85	0.88	0.90			
3	0.80	0.85	0.88	0.90	0.75	0.80	0.83			
4	0.76	0.81	0.85	0.88	0.70	0.77	0.80			
5	0.72	0.78	0.83	0.86	0.67	0.74	0.78			
6	0.69	0.76	0.81	0.85	0.64	0.72	0.76			
7	0.67	0.75	0.80	0.84	0.62	0.70	0.75			
8	0.65	0.74	0.79	0.83	0.61	0.69	0.74			
9	0.63	0.72	0.78	0.83	0.59	0.68	0.73			
10	0.62	0.72	0.78	0.82	0.58	0.67	0.73			
11	0.61	0.71	0.77	0.82	0.57	0.67	0.72			
12	0.60	0.70	0.77	0.81	0.57	0.66	0.72			

Triple extruded, Dry-cure

3 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screen PVC/HDPE sheath

Product Sheet No. 231-13 A

Conductor	Nomi	inal Diameters	Wir	e Screen	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
16 *	12.5	14.1	16	28 x 0.85	1.0 / 1.0	20.3	0.58
25	13.7	15.3	20	36 x 0.85	1.0 / 1.0	21.5	0.73
35	14.7	16.3	20	36 x 0.85	1.0 / 1.0	22.5	0.84
50	16.0	17.6	20	36 x 0.85	1.0 / 1.0	23.8	0.98
70	17.4	19.0	20	36 x 0.85	1.0 / 1.0	25.2	1.21
95	19.1	20.7	20	36 x 0.85	1.0 / 1.0	26.9	1.48
120	20.5	22.1	20	36 x 0.85	1.0 / 1.0	28.3	1.74
150	21.9	23.5	20	36 x 0.85	1.0 / 1.0	29.7	2.02
185	23.7	25.3	20	36 x 0.85	1.0 / 1.0	31.5	2.40
240	26.0	27.6	20	36 x 0.85	1.0 / 1.0	33.8	2.98
300	28.2	29.8	20	36 x 0.85	1.0 / 1.1	36.2	3.60
400	31.6	33.2	20	36 x 0.85	1.1 / 1.1	39.8	4.49
500	34.9	36.5	20	36 x 0.85	1.1 / 1.2	43.3	5.50
630	38.5	40.1	20	36 x 0.85	1.2 / 1.2	47.1	6.90
Issue: Janu	ary 2012						
6.35/11 (12) kV. Made	to AS/NZS 1429.1					

* Short circuit rating less than 3 kA for 1 s

Note:

Triple extruded, Dry-cure

3 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screen PVC/HDPE sheath

Product Sheet No. 231-13 B

Conductor	Conductor AC	Inductive	Conductor to	Nominal PVC	Cur	rent Ratings	(A)
Size	Resistance at 50 Hz and 90°C	Reactance at 50 Hz	Screen Capacitance	Duct Size (Multi Way)		TEST	TRONT
(mm²)	(Ohm/km)	(Ohm/km)	(μF/km)	(mm)	8	27271	SQQ4//
()	(,	(,	(p)	(,	•		
16 *	1.47	0.154	0.18	65	125	120	101
25	0.927	0.144	0.21	65	163	154	129
35	0.668	0.137	0.23	65	197	183	153
50	0.494	0.130	0.26	65	237	216	181
70	0.342	0.121	0.29	80 (NZ)	294	263	221
95	0.247	0.115	0.33	80 (NZ)	359	313	264
120	0.196	0.111	0.36	100 (NZ)	413	355	305
150	0.159	0.107	0.39	100 (NZ)	470	397	341
185	0.128	0.103	0.43	100 (NZ)	539	447	384
240	0.0981	0.099	0.47	100 (NZ)	637	516	443
300	0.0791	0.096	0.52	150	730	579	509
400	0.0632	0.093	0.59	150	848	655	575
500	0.0510	0.090	0.66	150	978	737	647
630	0.0416	0.087	0.74	150	1122	823	722
Issue: Janu	ary 2012						
6.35/11 (12) kV. Made to AS/N	JZS 1429.1					

* Short circuit rating less than 3 kA for 1 s

Note:

Ambient Air Temperature	30 °C
Soil Temperature	15 °C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	1.0 m
Screens bonded both ends	

10 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screen PVC/HDPE sheath

Product Sheet No. 231-14 A

Conductor	Nomi	nal Diameters					Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
25 *	13.7	15.3	24	29 x 1.03	1.0 / 1.0	21.9	0.77
35 *	14.7	16.3	34	24 x 1.35	1.0 / 1.0	23.5	0.98
50 *	16.0	17.6	49	22 x 1.69	1.0 / 1.0	25.5	1.26
70	17.4	19.0	70	31 x 1.69	1.0 / 1.0	26.9	1.68
9 5	19.1	20.7	70	31 x 1.69	1.0 / 1.0	28.6	1.95
120	20.5	22.1	69	48 x 1.35	1.0 / 1.0	29.3	2.20
150	21.9	23.5	69	48 x 1.35	1.0 / 1.0	30.7	2.48
185	23.7	25.3	69	48 x 1.35	1.0 / 1.0	32.5	2.86
240	26.0	27.6	69	48 x 1.35	1.0 / 1.0	34.8	3.44
300	28.2	29.8	69	48 x 1.35	1.0 / 1.1	37.2	4.06
400	31.6	33.2	69	48 x 1.35	1.1 / 1.1	40.8	4.95
500	34.9	36.5	69	48 x 1.35	1.1 / 1.2	44.3	5.95
630	38.5	40.1	69	48 x 1.35	1.2 / 1.2	48.1	7.35

6.35/11 (12) kV. Made to AS/NZS 1429.1

 * Short circuit rating less than 10 kA for 1 s

Note:

Triple extruded, Dry-cure

10 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screen PVC/HDPE sheath

Product Sheet No. 231-14 B

iiouuo							
Conductor Size	Conductor AC Resistance at	Inductive Reactance at	Conductor to Screen	Nominal PVC Duct Size	Cur	rrent Ratings	(A)
5126	50 Hz and 90°C	50 Hz	Capacitance	(Multi Way)	20		ROD .
(mm²)	(Ohm/km)	(Ohm/km)	(μF/km)	(mm)	28	17771	
25 *	0.927	0.145	0.21	65	164	154	129
35 *	0.668	0.140	0.23	65	200	184	154
50 *	0.494	0.134	0.26	80 (NZ)	242	217	183
70	0.342	0.125	0.29	80 (NZ)	298	262	221
95	0.247	0.119	0.33	100 (NZ)	362	311	267
120	0.196	0.113	0.36	100 (NZ)	413	351	301
150	0.159	0.109	0.39	100 (NZ)	467	391	336
185	0.128	0.105	0.43	100 (NZ)	535	439	377
240	0.0980	0.100	0.47	100 (NZ)	627	503	432
300	0.0791	0.098	0.52	150	715	561	493
400	0.0631	0.094	0.59	150	824	630	553
500	0.0509	0.091	0.66	150	943	702	616
630	0.0415	0.088	0.74	150	1072	777	681
Issue: Janu	iary 2012						

6.35/11 (12) kV. Made to AS/NZS 1429.1

* Short circuit rating less than 10 kA for 1 s

Note:

Ambient Air Temperature	30 °C
Soil Temperature	15 °C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	1.0 m
Screens bonded both ends	

Triple extruded, Dry-cure

3 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screen PVC/HDPE sheath

Product Sheet No. 231-23 A

Conductor	Nomi	inal Diameters	Wir	e Screen	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
25 *	13.7	15.3	16	28 x 0.85	1.0 / 1.0	21.5	0.53
35 ^	14.7	16.3	20	36 x 0.85	1.0 / 1.0	22.5	0.62
50	15.9	17.5	20	36 x 0.85	1.0 / 1.0	23.7	0.68
70	17.4	19.0	20	36 x 0.85	1.0 / 1.0	25.2	0.78
95 ^	19.1	20.7	20	36 x 0.85	1.0 / 1.0	26.9	0.89
120	20.5	22.1	20	36 x 0.85	1.0 / 1.0	28.3	0.99
150	21.9	23.5	20	36 x 0.85	1.0 / 1.0	29.7	1.09
185 ^	23.6	25.2	20	36 x 0.85	1.0 / 1.0	31.4	1.23
240 ^	26.0	27.6	20	36 x 0.85	1.0 / 1.0	33.8	1.45
300 ^	28.0	29.6	20	36 x 0.85	1.0 / 1.1	36.0	1.68
400	31.1	32.7	20	36 x 0.85	1.1 / 1.1	39.3	2.02
500	34.2	35.8	20	36 x 0.85	1.1 / 1.2	42.6	2.39
630	37.8	39.4	20	36 x 0.85	1.2 / 1.2	46.4	2.89
800	42.4	44.0	20	36 x 0.85	1.2 / 1.3	51.3	3.51
1000	46.5	48.1	20	36 x 0.85	1.2 / 1.3	55.4	4.20

* Short circuit rating less than 3 kA for 1 s

^ Also complies with AS/NZS 4026

Note:

Triple extruded, Dry-cure

3 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screen PVC/HDPE sheath

Product Sheet No. 231-23 B

1 I Oudo		. 201-20 D					
Conductor	Conductor AC	Inductive	Conductor to	Nominal PVC	Cur	rent Ratings	(A)
Size	Resistance at 50 Hz and 90°C	Reactance at 50 Hz	Screen Capacitance	Duct Size (Multi Way)	8		
(mm²)	(Ohm/km)	(Ohm/km)	(μF/km)	(mm)	100		
25 *	1.54	0.144	0.21	65	127	119	100
35 ^	1.113	0.137	0.23	65	153	142	119
50	0.822	0.130	0.26	65	184	167	140
70	0.568	0.121	0.29	80 (NZ)	229	204	172
95 ^	0.411	0.115	0.33	80 (NZ)	279	243	205
120	0.325	0.111	0.36	100 (NZ)	322	276	237
150	0.265	0.107	0.39	100 (NZ)	365	309	265
185 ^	0.211	0.103	0.42	100 (NZ)	421	349	300
240 ^	0.161	0.099	0.47	100 (NZ)	499	404	347
300 ^	0.130	0.096	0.52	150	572	455	399
400	0.102	0.093	0.58	150	669	519	456
500	0.0803	0.090	0.65	150	779	590	518
630	0.0638	0.088	0.72	150	907	669	587
800	0.0518	0.085	0.82	200	1050	752	687
1000	0.0432	0.083	0.91	200	1189	831	759
lssue: lani	uary 2012						

Issue: January 2012

6.35/11 (12) kV. Made to AS/NZS 1429.1

* Short circuit rating less than 3 kA for 1 s

^ Also complies with AS/NZS 4026

Note:

Ambient Air Temperature	30 °C
Soil Temperature	15 °C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	1.0 m
Screens bonded both ends	

Triple extruded, Dry-cure

10 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screen PVC/HDPE sheath

Product Sheet No. 231-24 A

Conductor	Nomi	inal Diameters	Wir										Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass						
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)						
35 *	14.7	16.3	23	40 x 0.85	1.0 / 1.0	22.5	0.64						
50 *	15.9	17.5	33	39 x 1.03	1.0 / 1.0	24.1	0.80						
70 *	17.4	19.0	45	54 x 1.03	1.0 / 1.0	25.6	1.00						
9 5 *	19.1	20.7	62	43 x 1.35	1.0 / 1.0	27.9	1.28						
120	20.5	22.1	69	48 x 1.35	1.0 / 1.0	29.3	1.45						
150	21.9	23.5	69	48 x 1.35	1.0 / 1.0	30.7	1.55						
185 ^	23.6	25.2	69	48 x 1.35	1.0 / 1.0	32.4	1.69						
240 ^	26.0	27.6	69	48 x 1.35	1.0 / 1.0	34.8	1.91						
300 ^	28.0	29.6	69	48 x 1.35	1.0 / 1.1	37.0	2.14						
400	31.1	32.7	69	48 x 1.35	1.1 / 1.1	40.3	2.48						
500	34.2	35.8	69	48 x 1.35	1.1 / 1.2	43.6	2.85						
630	37.8	39.4	69	48 x 1.35	1.2 / 1.2	47.4	3.35						
800	42.4	44.0	69	48 x 1.35	1.2 / 1.3	52.3	3.97						
1000	46.5	48.1	69	48 x 1.35	1.2 / 1.3	56.4	4.66						
Issue: January 2012 6.35/11 (12) kV. Made to AS/NZS 1429.1													

* Short circuit rating less than 10 kA for 1 s

^ Also complies with AS/NZS 4026

Note:

Triple extruded, Dry-cure

10 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screen PVC/HDPE sheath

Product Sheet No. 231-24 B

Conductor	Conductor AC	Inductive	Conductor to	Nominal PVC	Cur	rent Ratings	(A)
Size	Resistance at 50 Hz and 90°C	Reactance at 50 Hz	Screen Capacitance	Duct Size (Multi Way)	28		
(mm²)	(Ohm/km)	(Ohm/km)	(μF/km)	(mm)	100		
35 *	1.113	0.137	0.23	65	153	142	119
50 *	0.822	0.131	0.26	80 (NZ)	185	168	141
70 *	0.568	0.122	0.29	80 (NZ)	229	204	172
9 5 *	0.411	0.117	0.33	80 (NZ)	281	243	205
120	0.325	0.113	0.36	100 (NZ)	323	275	236
150	0.265	0.109	0.39	100 (NZ)	366	307	263
185 ^	0.211	0.105	0.42	100 (NZ)	420	346	297
240 ^	0.161	0.100	0.47	100 (NZ)	496	399	342
300 ^	0.130	0.098	0.52	150	567	447	392
400	0.102	0.095	0.58	150	659	507	445
500	0.0802	0.092	0.65	150	763	572	502
630	0.0637	0.089	0.72	150	881	644	565
800	0.0517	0.086	0.82	200	1013	718	656
1000	0.0431	0.084	0.91	200	1139	788	719

6.35/11 (12) kV. Made to AS/NZS 1429.1

* Short circuit rating less than 10 kA for 1 s

^ Also complies with AS/NZS 4026

Note:

Ambient Air Temperature	30 °C
Soil Temperature	15 °C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	1.0 m
Screens bonded both ends	

3 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Triple extruded, Dry-cure

Product Sheet No. 233-13 A

Conductor	Nomi	inal Diameters	Wire Sc	reen (Per Core)	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
16 *	12.5	14.1	5.7	10 x 0.85	1.1 / 1.1	39.0	1.46
25	13.7	15.3	6.8	12 x 0.85	1.1 / 1.2	41.8	1.86
35	14.7	16.3	6.8	12 x 0.85	1.1 / 1.2	43.9	2.20
50	16.0	17.6	6.8	12 x 0.85	1.2 / 1.2	46.9	2.67
70	17.4	19.0	7.4	13 x 0.85	1.3 / 1.3	50.4	3.42
95	19.1	20.7	7.9	14 x 0.85	1.3 / 1.4	54.2	4.32
120	20.5	22.1	8.5	15 x 0.85	1.4 / 1.4	57.8	5.20
150	21.9	23.5	8.5	15 x 0.85	1.4 / 1.5	61.0	6.10
185	23.7	25.3	9.6	17 x 0.85	1.5 / 1.5	65.1	7.35
240	26.0	27.6	10.2	18 x 0.85	1.6 / 1.6	70.5	9.20
300	28.2	29.8	11.3	20 x 0.85	1.6 / 1.7	75.4	11.20
400	31.6	33.2	11.9	21 x 0.85	1.8 / 1.8	83.4	14.05
Issue: Janu	ary 2012					L. L	
6.35/11 (12) kV. Made to AS/NZS 1429.1							

* Short circuit rating less than 3 kA for 1 s

Note:

Triple extruded, Dry-cure

3 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 233-13 B

Conductor Size	Conductor AC	Inductive Reactance at	Conductor to Screen	Nominal PVC	Cur	rent Ratings	(A)		
Size	Resistance at 50 Hz and 90°C	50 Hz	Capacitance	Duct Size (Single Way)					
(mm²)	(Ohm/km)	(Ohm/km)	(µF/km)	(mm)	\leq	11241			
16 *	1.47	0.141	0.18	65	111	112	93		
25	0.927	0.132	0.21	65	145	143	119		
35	0.668	0.126	0.23	65	175	171	143		
50	0.494	0.119	0.26	65	210	202	168		
70	0.342	0.111	0.29	80 (NZ)	259	246	206		
95	0.247	0.105	0.33	80 (NZ)	315	294	246		
120	0.196	0.102	0.36	100 (NZ)	360	333	284		
150	0.159	0.099	0.39	100 (NZ)	408	373	318		
185	0.128	0.095	0.43	100 (NZ)	466	421	358		
240	0.0984	0.091	0.47	100 (NZ)	546	486	414		
300	0.0796	0.089	0.52	150	622	547	474		
400	0.0638	0.086	0.59	150	714	618	536		
Issue: Janu	ary 2012								

6.35/11 (12) kV. Made to AS/NZS 1429.1

* Short circuit rating less than 3 kA for 1 s

Note:

Ambient Air Temperature	30 °C
Soil Temperature	15 °C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	1.0 m

Triple extruded, Dry-cure

10 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 233-14 A

Conductor	Nomi	Nominal Diameters		ens (per core)	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
35 *	14.7	16.3	11.3	20 x 0.85	1.2 / 1.2	44.1	2.35
50 *	16.0	17.6	16.5	29 x 0.85	1.2 / 1.3	47.1	2.95
70	17.4	19.0	22.7	40 x 0.85	1.3 / 1.3	50.4	3.85
95	19.1	20.7	22.7	40 x 0.85	1.3 / 1.4	54.2	4.74
120	20.5	22.1	22.7	40 x 0.85	1.4 / 1.4	57.8	5.60
150	21.9	23.5	22.7	40 x 0.85	1.4 / 1.5	61.0	6.50
185	23.7	25.3	22.7	40 x 0.85	1.5 / 1.5	65.1	7.70
240	26.0	27.6	22.7	40 x 0.85	1.6 / 1.6	70.5	9.55
300	28.2	29.8	22.7	40 x 0.85	1.6 / 1.7	75.4	11.50
400	31.6	33.2	22.7	40 x 0.85	1.8 / 1.8	83.4	14.35
Issue: Janu	ary 2012	1		1		<u> </u>	
6.35/11 (12) kV. Made	to AS/NZS 1429.1					

* Short circuit rating less than 10 kA for 1 s

Note:

Triple extruded, Dry-cure

10 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 233-14 B

			1				
Conductor Size	Conductor AC Resistance at	Inductive Reactance at	Conductor to Screen	Nominal PVC Duct Size	Current Ratings (A)		
(mm²)	50 Hz and 90°C (Ohm/km)	50 Hz (Ohm/km)	Capacitance (µF/km)	(Single Way) (mm)	$\leq \otimes$	159951	'SØJ/
35 *	0.668	0.126	0.23	65	175	171	143
50 *	0.494	0.119	0.26	80 (NZ)	210	202	169
70	0.342	0.111	0.29	80 (NZ)	259	246	206
95	0.247	0.105	0.33	80 (NZ)	315	294	246
120	0.196	0.102	0.36	100 (NZ)	360	333	284
150	0.159	0.099	0.39	100 (NZ)	408	373	318
185	0.128	0.095	0.43	100 (NZ)	466	421	358
240	0.0984	0.091	0.47	100 (NZ)	546	486	414
300	0.0796	0.089	0.52	150	622	547	474
400	0.0638	0.086	0.59	150	714	618	536
Issue: Janu	iary 2012						

6.35/11 (12) kV. Made to AS/NZS 1429.1

* Short circuit rating less than 10 kA for 1 s

Note:

Ambient Air Temperature	30 °C
Soil Temperature	15 °C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	1.0 m

Triple extruded, Dry-cure

3 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 233-23 A

Conductor	Nomir	nal Diameters	Wire Scree	ens (per core)	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
25 *	13.7	15.3	5.7	10 x 0.85	1.1 / 1.1	41.6	1.33
35 ^	14.7	16.3	6.8	12 x 0.85	1.1 / 1.2	43.9	1.53
50	15.9	17.5	6.8	12 x 0.85	1.2 / 1.2	46.7	1.75
70	17.4	19.0	7.4	13 x 0.85	1.3 / 1.3	50.4	2.11
95 ^	19.1	20.7	7.9	14 x 0.85	1.3 / 1.4	54.2	2.51
120	20.5	22.1	8.5	15 x 0.85	1.4 / 1.4	57.5	2.89
150	21.9	23.5	8.5	15 x 0.85	1.4 / 1.5	60.7	3.26
185 ^	23.6	25.2	9.6	17 x 0.85	1.5 / 1.5	64.6	3.79
240 ^	26.0	27.6	10.2	18 x 0.85	1.6 / 1.6	70.2	4.59
300 ^	28.0	29.6	10.8	19 x 0.85	1.6 / 1.7	74.7	5.35
400	31.1	32.7	11.9	21 x 0.85	1.8 / 1.8	82.3	6.55

6.35/11 (12) kV. Made to AS/NZS 1429.1

 * Short circuit rating less than 3 kA for 1 s

^ Also complies with AS/NZS 4026

Note:

Triple extruded, Dry-cure

3 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 233-23 B

Conductor Size (mm ²)	Conductor AC Resistance at 50 Hz and 90°C (Ohm/km)	Inductive Reactance at 50 Hz (Ohm/km)	Conductor to Screen Capacitance (µF/km)	Nominal PVC Duct Size (Single Way) (mm)	Cur	rent Ratings	(A)
25 *	1.54	0.132	0.21	65	112	111	93
35 ^	1.11	0.125	0.23	65	136	133	111
50	0.822	0.120	0.26	65	162	157	130
70	0.568	0.111	0.29	80 (NZ)	201	191	160
95 ^	0.411	0.105	0.33	80 (NZ)	244	228	191
120	0.325	0.102	0.36	100 (NZ)	280	259	220
150	0.265	0.099	0.39	100 (NZ)	317	290	246
185 ^	0.211	0.095	0.42	100 (NZ)	363	328	279
240 ^	0.162	0.091	0.47	100 (NZ)	426	379	323
300 ^	0.130	0.089	0.52	150	486	428	371
400	0.102	0.087	0.58	150	562	487	423

Issue: January 2012

6.35/11 (12) kV. Made to AS/NZS 1429.1

* Short circuit rating less than 3 kA for 1 s

^ Also complies with AS/NZS 4026

Note:

30 °C
15 °C
1.2 K.m/W
1.0 m

Triple extruded, Dry-cure

10 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 233-24 A

Conductor	Nomir	nal Diameters	Wire Scre	ens (per core)	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
25 *	13.7	15.3	5.7	10 x 0.85	1.1 / 1.1	41.6	1.33
35 *	14.7	16.3	7.9	14 x 0.85	1.1 / 1.2	43.9	1.56
50 *	15.9	17.5	10.8	19 x 0.85	1.2 / 1.3	46.9	1.88
70 *	17.4	19.0	15.3	27 x 0.85	1.3 / 1.3	50.4	2.34
95 *	19.1	20.7	20.4	36 x 0.85	1.3 / 1.4	54.2	2.86
120	20.5	22.1	22.7	40 x 0.85	1.4 / 1.4	57.5	3.29
150	21.9	23.5	22.7	40 x 0.85	1.4 / 1.5	60.7	3.66
185 ^	23.6	25.2	22.7	40 x 0.85	1.5 / 1.5	64.6	4.15
240 ^	26.0	27.6	22.7	40 x 0.85	1.6 / 1.6	70.2	4.94
300 ^	28.0	29.6	22.7	40 x 0.85	1.6 / 1.7	75.0	5.65
400	31.1	32.7	22.7	40 x 0.85	1.8 / 1.8	82.3	6.85
Issue: Janu	ary 2012	<u>.</u>		· · · · ·		·	

6.35/11 (12) kV. Made to AS/NZS 1429.1

 * Short circuit rating less than 10 kA for 1 s

^ Also complies with AS/NZS 4026

Note:

Triple extruded, Dry-cure

10 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 233-24 B

110000											
Conductor Size (mm ²)	Conductor AC Resistance at 50 Hz and 90°C (Ohm/km)	Inductive Reactance at 50 Hz (Ohm/km)	Conductor to Screen Capacitance (µF/km)	Nominal PVC Duct Size (Single Way) (mm)	Cur	rent Ratings	(A)				
25 *	1.54	0.132	0.21	65	112	111	93				
35 *	1.11	0.125	0.23	65	136	133	111				
50 *	0.822	0.120	0.26	65	162	157	130				
70 *	0.568	0.111	0.29	80 (NZ)	201	191	160				
95 *	0.411	0.105	0.33	80 (NZ)	244	228	191				
120	0.325	0.102	0.36	100 (NZ)	280	259	220				
150	0.265	0.099	0.39	100 (NZ)	317	290	246				
185 ^	0.211	0.095	0.42	100 (NZ)	363	328	279				
240 ^	0.162	0.091	0.47	100 (NZ)	426	379	323				
300 ^	0.130	0.089	0.52	150	486	427	370				
400	0.102	0.087	0.58	150	562	487	423				

Issue: January 2012

6.35/11 (12) kV. Made to AS/NZS 1429.1

* Short circuit rating less than 10 kA for 1 s

^ Also complies with AS/NZS 4026

Note:

30 °C
15 °C
1.2 K.m/W
1.0 m

3 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screen PVC/HDPE sheath

Product Sheet No. 241-13 A

Conductor	Nomi	nal Diameters	Wir	e Screen	Thickness of	Nominal Overall	Linear					
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass					
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)					
35	18.5	20.1	20	36 x 0.85	1.0 / 1.0	26.3	0.98					
50	19.8	21.4	20	36 x 0.85	1.0 / 1.0	27.6	1.12					
70	21.2	22.8	20	36 x 0.85	1.0 / 1.0	29.0	1.35					
95	22.9	24.5	20	36 x 0.85	1.0 / 1.0	30.7	1.64					
120	24.3	25.9	20	36 x 0.85	1.0 / 1.0	32.1	1.91					
150	25.7	27.3	20	36 x 0.85	1.0 / 1.0	33.5	2.20					
185	27.5	29.1	20	36 x 0.85	1.0 / 1.1	35.5	2.60					
240	29.8	31.4	20	36 x 0.85	1.0 / 1.1	37.8	3.19					
300	32.0	33.6	20	36 x 0.85	1.1 / 1.1	40.2	3.83					
400	35.4	37.0	20	36 x 0.85	1.1 / 1.2	43.8	4.73					
500	38.7	40.3	20	36 x 0.85	1.2 / 1.2	47.3	5.75					
630	42.3	43.9	20	36 x 0.85	1.2 / 1.3	51.2	7.20					
	•	to AS/NZS 1429.1	Issue: January 2012 12.7/22 (24) kV. Made to AS/NZS 1429.1									

Note:

3 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screen PVC/HDPE sheath

Product Sheet No. 241-13 B

	Resistance at 0 Hz and 90°C	Reactance at 50 Hz	Screen	Duct Size			
(mm²)	(Oh		Capacitance	(Multi Way)	8		
	(Ohm/km)	(Ohm/km)	(μF/km)	(mm)			
35	0.668	0.147	0.17	80 (NZ)	202	183	156
50	0.494	0.139	0.19	80 (NZ)	242	216	183
70	0.342	0.130	0.21	100 (NZ)	299	263	227
95	0.247	0.123	0.23	100 (NZ)	365	314	271
120	0.196	0.119	0.25	100 (NZ)	419	355	307
150	0.159	0.115	0.27	100 (NZ)	476	398	343
185	0.128	0.110	0.29	100 (NZ)	546	448	386
240	0.0979	0.106	0.32	150	644	517	455
300	0.0789	0.103	0.35	150	737	581	511
400	0.0629	0.099	0.40	150	855	658	579
500	0.0505	0.095	0.44	150	986	740	651
630	0.0411	0.092	0.49	200	1132	829	758

Note:

1. The values in this table are for installation conditions of:Ambient Air Temperature30 °CSoil Temperature15 °CSoil Thermal Resistivity1.2 K.m/WDepth of Burial1.0 mScreens bonded both ends

10 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screen PVC/HDPE sheath

Product Sheet No. 241-14 A

Conductor	Nomi	inal Diameters	Wir	e Screen	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
35 *	18.5	20.1	34	41 x 1.03	1.0 / 1.0	26.7	1.10
50 *	19.8	21.4	49	34 x 1.35	1.0 / 1.0	28.6	1.39
70	21.2	22.8	69	48 x 1.35	1.0 / 1.0	30.0	1.81
95	22.9	24.5	69	48 x 1.35	1.0 / 1.0	31.7	2.10
120	24.3	25.9	69	48 x 1.35	1.0 / 1.0	33.1	2.37
150	25.7	27.3	69	48 x 1.35	1.0 / 1.0	34.5	2.65
185	27.5	29.1	69	48 x 1.35	1.0 / 1.1	36.5	3.06
240	29.8	31.4	69	48 x 1.35	1.1 / 1.1	39.0	3.66
300	32.0	33.6	69	48 x 1.35	1.1 / 1.1	41.2	4.29
400	35.4	37.0	69	48 x 1.35	1.2 / 1.2	45.0	5.20
500	38.7	40.3	69	48 x 1.35	1.2 / 1.2	48.3	6.25
630	42.3	43.9	69	48 x 1.35	1.3 / 1.3	52.4	7.70
Issue: Janu	ary 2012		-	·		· · ·	
12.7/22 (24) kV. Made	to AS/NZS 1429.1					

* Short circuit rating less than 10 kA for 1 s

Note:

Triple extruded, Dry-cure

10 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screen PVC/HDPE sheath

Product Sheet No. 241-14 B

	1		F	ľ	1		
Conductor	Conductor AC	Inductive	Conductor to	Nominal PVC	Cur	rent Ratings	(A)
Size	Resistance at 50 Hz and 90°C	Reactance at 50 Hz	Screen Capacitance	Duct Size	\square		TEC
()				(Multi Way)	8	59951	
(mm²)	(Ohm/km)	(Ohm/km)	(μF/km)	(mm)		,,,, .,	
35 *	0.668	0.148	0.17	80 (NZ)	202	183	156
50 *	0.494	0.141	0.19	100 (NZ)	244	216	187
70	0.342	0.132	0.21	100 (NZ)	301	262	226
95	0.247	0.125	0.23	100 (NZ)	365	311	269
120	0.196	0.121	0.25	100 (NZ)	419	351	303
150	0.159	0.117	0.27	100 (NZ)	474	392	338
185	0.128	0.112	0.29	150	541	440	387
240	0.0978	0.108	0.32	150	635	504	444
300	0.0788	0.104	0.35	150	722	563	496
400	0.0628	0.101	0.40	150	832	633	556
500	0.0505	0.097	0.44	150	953	707	621
630	0.0409	0.094	0.49	200	1083	783	716

12.7/22 (24) kV. Made to AS/NZS 1429.1

* Short circuit rating less than 10 kA for 1 s

Note:

Ambient Air Temperature	30 °C
Soil Temperature	15 °C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	1.0 m
Screens bonded both ends	

3 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screen PVC/HDPE sheath

Product Sheet No. 241-23 A

Conductor	Nomi	inal Diameters	Wir	e Screen	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
35 ^	18.5	20.1	20	36 x 0.85	1.0 / 1.0	26.3	0.75
50	19.7	21.3	20	36 x 0.85	1.0 / 1.0	27.5	0.82
70	21.2	22.8	20	36 x 0.85	1.0 / 1.0	29.0	0.92
95 ^	22.9	24.5	20	36 x 0.85	1.0 / 1.0	30.7	1.04
120	24.3	25.9	20	36 x 0.85	1.0 / 1.0	32.1	1.15
150	25.7	27.3	20	36 x 0.85	1.0 / 1.0	33.5	1.27
185 ^	27.4	29.0	20	36 x 0.85	1.0 / 1.1	35.4	1.43
240 ^	29.8	31.4	20	36 x 0.85	1.0 / 1.1	37.8	1.66
300 ^	31.8	33.4	20	36 x 0.85	1.1 / 1.1	40.0	1.90
400	34.9	36.5	20	36 x 0.85	1.1 / 1.2	43.3	2.26
500	38.0	39.6	20	36 x 0.85	1.2 / 1.2	46.6	2.65
630	41.6	43.2	20	36 x 0.85	1.2 / 1.3	50.5	3.17
800	46.2	47.8	20	36 x 0.85	1.3 / 1.3	55.3	3.83
1000	50.3	51.9	20	36 x 0.85	1.3 / 1.3	59.4	4.54
Issue: January 2012							
12.7/22 (24) kV. Made to AS/NZS 1429.1							

^ Also complies with AS/NZS 4026

Note:

Triple extruded, Dry-cure

3 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screen PVC/HDPE sheath

Product Sheet No. 241-23 B

TTOULO								
Conductor	Conductor AC	Inductive	Conductor to	Nominal PVC	Cur	rent Ratings	(A)	
Size	Resistance at 50 Hz and 90°C	Reactance at 50 Hz	Screen Capacitance	Duct Size (Multi Way)		TEST	7/05	
(mm²)	(Ohm/km)	(Ohm/km)	(μF/km)	(mm)	6	27721	3004/	
			•					
35 ^	1.113	0.146	0.17	80 (NZ)	157	142	121	
50	0.822	0.140	0.19	80 (NZ)	187	167	142	
70	0.568	0.130	0.21	100 (NZ)	233	204	176	
95 ^	0.411	0.123	0.23	100 (NZ)	283	244	210	
120	0.325	0.119	0.25	100 (NZ)	326	277	239	
150	0.265	0.115	0.27	100 (NZ)	370	309	267	
185 ^	0.211	0.110	0.29	100 (NZ)	426	350	301	
240 ^	0.161	0.106	0.32	150	504	405	356	
300 ^	0.130	0.103	0.35	150	577	455	401	
400	0.102	0.099	0.39	150	673	520	458	
500	0.0800	0.096	0.43	150	783	592	520	
630	0.0634	0.093	0.48	200	912	672	615	
800	0.0513	0.090	0.54	200	1054	756	691	
1000	0.0427	0.087	0.60	200	1194	836	764	
Issue: Janu	Issue: January 2012							
12.7/22 (24) kV. Made to AS/NZS 1429.1								

^ Also complies with AS/NZS 4026

Note:

Ambient Air Temperature	30 °C
Soil Temperature	15 °C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	1.0 m
Screens bonded both ends	

Triple extruded, Dry-cure

10 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screen PVC/HDPE sheath

Product Sheet No. 241-24 A

Conductor	Nomi	inal Diameters	Wir	e Screen	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
35 *	18.5	20.1	23	40 x 0.85	1.0 / 1.0	26.3	0.78
50 *	19.7	21.3	33	39 x 1.03	1.0 / 1.0	27.9	0.94
70 *	21.2	22.8	46	32 x 1.35	1.0 / 1.0	30.0	1.17
95 *	22.9	24.5	61	27 x 1.69	1.0 / 1.0	32.4	1.43
120	24.3	25.9	69	48 x 1.35	1.0 / 1.0	33.1	1.61
150	25.7	27.3	69	48 x 1.35	1.0 / 1.0	34.5	1.72
185 ^	27.4	29.0	69	48 x 1.35	1.0 / 1.1	36.4	1.89
240 ^	29.8	31.4	69	48 x 1.35	1.1 / 1.1	39.0	2.13
300	31.8	33.4	69	48 x 1.35	1.1 / 1.1	41.0	2.36
400	34.9	36.5	69	48 x 1.35	1.2 / 1.2	44.5	2.74
500	38.0	39.6	69	48 x 1.35	1.2 / 1.2	47.6	3.11
630	41.6	43.2	69	48 x 1.35	1.3 / 1.3	51.7	3.66
800	46.2	47.8	69	48 x 1.35	1.3 / 1.4	56.5	4.31
1000	50.3	51.9	69	48 x 1.35	1.3 / 1.4	60.6	5.00
Issue: January 2012							
12.7/22 (24) kV. Made to AS/NZS 1429.1							

* Short circuit rating less than 10 kA for 1 s

^ Also complies with AS/NZS 4026

Note:

10 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screen PVC/HDPE sheath

Product Sheet No. 241-24 B

Conductor	Conductor AC	Inductive	Conductor to	Nominal PVC	Cur	rent Ratings	(A)
Size	Resistance at 50 Hz and 90°C	Reactance at 50 Hz	Screen Capacitance	Duct Size (Multi Way)	28		
(mm²)	(Ohm/km)	(Ohm/km)	(μF/km)	(mm)	-100		
35 *	1.113	0.146	0.17	80 (NZ)	157	142	121
50 *	0.822	0.141	0.19	80 (NZ)	188	168	142
70 *	0.568	0.132	0.21	100 (NZ)	235	204	177
95 *	0.411	0.127	0.23	100 (NZ)	286	243	210
120	0.325	0.121	0.25	100 (NZ)	327	275	237
150	0.265	0.117	0.27	100 (NZ)	370	307	265
185 ^	0.211	0.112	0.29	150	425	346	305
240 ^	0.161	0.108	0.32	150	501	399	351
300	0.130	0.104	0.35	150	571	447	394
400	0.102	0.101	0.39	150	663	508	447
500	0.0800	0.097	0.43	150	768	574	505
630	0.0633	0.095	0.48	200	886	647	592
800	0.0512	0.091	0.54	200	1019	722	660
1000	0.0426	0.088	0.60	200	1146	793	724

12.7/22 (24) kV. Made to AS/NZS 1429.1

* Short circuit rating less than 10 kA for 1 s

^ Also complies with AS/NZS 4026

Note:

Ambient Air Temperature	30 °C
Soil Temperature	15 °C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	1.0 m
Screens bonded both ends	

3 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 243-13 A

Conductor	Nomir	Nominal Diameters		ens (per core)	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
35	18.5	20.1	7.4	13 x 0.85	1.3 / 1.4	52.9	2.76
50	19.8	21.4	7.9	14 x 0.85	1.4 / 1.4	56.0	3.28
70	21.2	22.8	8.5	15 x 0.85	1.4 / 1.5	59.2	4.04
95	22.9	24.5	9.1	16 x 0.85	1.5 / 1.5	63.1	4.99
120	24.3	25.9	9.6	17 x 0.85	1.5 / 1.6	66.6	5.90
150	25.7	27.3	10.2	18 x 0.85	1.6 / 1.6	69.8	6.85
185	27.5	29.1	10.8	19 x 0.85	1.6 / 1.7	73.9	8.10
240	29.8	31.4	11.3	20 x 0.85	1.7 / 1.8	79.3	10.05
300	32.0	33.6	12.5	22 x 0.85	1.8 / 1.9	84.4	12.10
400	35.4	37.0	13.6	24 x 0.85	1.9 / 2.0	92.2	14.70
Issue: September 2012							
12.7/22 (24) kV. Made to AS/NZS 1429.1							

Note:

Triple extruded, Dry-cure

3 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 243-13 B

Conductor	Conductor AC		Conductor to	Naminal DVC	<u></u>	want Datinga	(1)
Conductor Size (mm ²)	Conductor AC Resistance at 50 Hz and 90°C (Ohm/km)	Inductive Reactance at 50 Hz (Ohm/km)	Conductor to Screen Capacitance (µF/km)	Nominal PVC Duct Size (Single Way) (mm)		rent Ratings	
35	0.668	0.138	0.17	80 (NZ)	177	170	144
50	0.494	0.131	0.19	100 (NZ)	212	201	173
70	0.342	0.122	0.21	100 (NZ)	261	245	210
95	0.247	0.116	0.23	100 (NZ)	317	293	251
120	0.196	0.111	0.25	100 (NZ)	363	333	285
150	0.159	0.108	0.27	100 (NZ)	411	373	319
185	0.128	0.103	0.29	150	469	421	366
240	0.0981	0.099	0.32	150	549	486	423
300	0.0792	0.096	0.35	150	625	547	476
400	0.0633	0.093	0.40	150	718	620	539
Issue: September 2012							
12.7/22 (24) kV. Made to AS/NZS 1429.1							

Note:

Ambient Air Temperature	30 °C
Soil Temperature	15 °C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	1.0 m

Triple extruded, Dry-cure

10 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 243-14 A

Conductor	Nomii	nal Diameters	Wire Scre	ens (per core)	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
35 *	18.5	20.1	11.3	20 x 0.85	1.3 / 1.4	52.9	2.87
50 *	19.8	21.4	16.5	29 x 0.85	1.4 / 1.4	56.0	3.51
70	21.2	22.8	22.7	40 x 0.85	1.4 / 1.5	59.2	4.44
95	22.9	24.5	22.7	40 x 0.85	1.5 / 1.5	63.4	5.40
120	24.3	25.9	22.7	40 x 0.85	1.5 / 1.6	66.6	6.25
150	25.7	27.3	22.7	40 x 0.85	1.6 / 1.6	69.8	7.20
185	27.5	29.1	22.7	40 x 0.85	1.6 / 1.7	73.9	8.45
240	29.8	31.4	22.7	40 x 0.85	1.7 / 1.8	79.3	10.35
300	32.0	33.6	22.7	40 x 0.85	1.8 / 1.9	84.4	12.40
400	35.4	37.0	22.7	40 x 0.85	1.9 / 2.0	92.2	15.30
Issue: Sept	ember 2012	2				·	
12.7/22 (24) kV. Made	to AS/NZS 1429.1					

* Short circuit rating less than 10 kA for 1 s

Note:

Triple extruded, Dry-cure

10 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 243-14 B

Conductor Size (mm ²)	Conductor AC Resistance at 50 Hz and 90°C (Ohm/km)	Inductive Reactance at 50 Hz (Ohm/km)	Conductor to Screen Capacitance (µF/km)	Nominal PVC Duct Size (Single Way) (mm)	Cur	rent Ratings	(A)
35 *	0.668	0.138	0.17	80 (NZ)	177	170	144
50 *	0.494	0.131	0.19	100 (NZ)	212	201	173
70	0.342	0.122	0.21	100 (NZ)	261	245	210
95	0.247	0.116	0.23	100 (NZ)	317	293	251
120	0.196	0.111	0.25	100 (NZ)	363	333	285
150	0.159	0.108	0.27	100 (NZ)	411	373	319
185	0.128	0.103	0.29	150	469	421	366
240	0.0981	0.099	0.32	150	549	486	423
300	0.0792	0.096	0.35	150	625	547	476
400	0.0633	0.093	0.40	150	718	620	539
Issue: Sept	ember 2012						

12.7/22 (24) kV. Made to AS/NZS 1429.1

* Short circuit rating less than 10 kA for 1 s

Note:

1. The values in this table are for installation conditions of:

Ambient Air Temperature	30 °C
Soil Temperature	15 °C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	1.0 m

Triple extruded, Dry-cure

3 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 243-23 A

Conductor	Nomir	nal Diameters	Wire Scre	ens (per core)	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
35 ^	18.5	20.1	7.4	13 x 0.85	1.3 / 1.4	52.9	2.08
50	19.7	21.3	7.9	14 x 0.85	1.4 / 1.4	55.7	2.36
70	21.2	22.8	8.5	15 x 0.85	1.4 / 1.5	59.2	2.73
9 5 ^	22.9	24.5	9.1	16 x 0.85	1.5 / 1.5	63.1	3.18
120	24.3	25.9	9.6	17 x 0.85	1.5 / 1.6	66.3	3.58
150	25.7	27.3	10.2	18 x 0.85	1.6 / 1.6	69.5	4.02
185 ^	27.4	29.0	10.8	19 x 0.85	1.6 / 1.7	73.4	4.56
240 ^	29.8	31.4	11.3	20 x 0.85	1.7 / 1.8	79.0	5.40
300	31.8	33.4	12.5	22 x 0.85	1.8 / 1.9	84.0	6.30
400	34.9	36.5	13.6	24 x 0.85	1.9 / 2.0	91.1	7.55
Issue: Sept	ember 2012	2		·		· I	
12.7/22 (24) kV. Made	to AS/NZS 1429.1					

^ Also complies with AS/NZS 4026

Note:

Triple extruded, Dry-cure

3 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 243-23 B

····							
Conductor Size (mm ²)	Conductor AC Resistance at 50 Hz and 90°C (Ohm/km)	Inductive Reactance at 50 Hz (Ohm/km)	Conductor to Screen Capacitance (µF/km)	Nominal PVC Duct Size (Single Way) (mm)	Cur	rent Ratings	(A)
35 ^	1.11	0.137	0.17	80 (NZ)	137	132	112
50	0.822	0.131	0.19	100 (NZ)	164	156	134
70	0.568	0.122	0.21	100 (NZ)	203	190	163
95 ^	0.411	0.116	0.23	100 (NZ)	246	227	195
120	0.325	0.111	0.25	100 (NZ)	282	259	221
150	0.265	0.108	0.27	100 (NZ)	319	289	247
185 ^	0.211	0.103	0.29	150	365	328	285
240 ^	0.161	0.099	0.32	150	428	379	330
300	0.130	0.096	0.35	150	487	427	371
400	0.102	0.093	0.39	150	564	488	424
Issue: Sept	ember 2012						

12.7/22 (24) kV. Made to AS/NZS 1429.1

^ Also complies with AS/NZS 4026

Note:

1. The values in this table are for installation conditions of:

Ambient Air Temperature	30 °C
Soil Temperature	15 °C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	1.0 m

Triple extruded, Dry-cure

10 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 243-24 A

Conductor	Nomii	nal Diameters	Wire Screens (per core)		Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
35 *	18.5	20.1	7.9	14 x 0.85	1.3 / 1.4	52.9	2.10
50 *	19.7	21.3	10.8	19 x 0.85	1.4 / 1.4	55.7	2.44
70 *	21.2	22.8	15.3	27 x 0.85	1.4 / 1.5	59.2	2.92
95 *	22.9	24.5	20.4	36 x 0.85	1.5 / 1.5	63.1	3.50
120	24.3	25.9	22.7	40 x 0.85	1.5 / 1.6	66.3	3.95
150	25.7	27.3	22.7	40 x 0.85	1.6 / 1.6	69.5	4.37
185 ^	27.4	29.0	22.7	40 x 0.85	1.6 / 1.7	73.4	4.89
240 ^	29.8	31.4	22.7	40 x 0.85	1.7 / 1.8	79.3	5.75
300	31.8	33.4	22.7	40 x 0.85	1.8 / 1.9	84.0	6.55
400	34.9	36.5	22.7	40 x 0.85	1.9 / 2.0	91.1	7.80

12.7/22 (24) kV. Made to AS/NZS 1429.1

* Short circuit rating less than 10 kA for 1 s

^ Also complies with AS/NZS 4026

Note:

Triple extruded, Dry-cure

10 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 243-24 B

iiouuo										
Conductor	Conductor AC	Inductive	Conductor to	Nominal PVC	Cur	Current Ratings (A)				
Size	Resistance at 50 Hz and 90°C	Reactance at 50 Hz	Screen Capacitance	Duct Size (Single Way)	20	7255	72000			
(mm²)	(Ohm/km)	(Ohm/km)	(µF/km)	(mm)	$\leq \otimes$	27721				
(1111)	Committee	Onini/Kinj	(µi /kii)	Unity						
35 *	1.11	0.137	0.17	80 (NZ)	137	132	112			
50 *	0.822	0.131	0.19	100 (NZ)	164	156	134			
70 *	0.568	0.122	0.21	100 (NZ)	203	190	163			
95 *	0.411	0.116	0.23	100 (NZ)	246	227	195			
120	0.325	0.111	0.25	100 (NZ)	282	259	221			
150	0.265	0.108	0.27	100 (NZ)	319	289	247			
185 ^	0.211	0.103	0.29	150	365	328	285			
240 ^	0.161	0.099	0.32	150	428	379	330			
300	0.130	0.096	0.35	150	487	427	371			
400	0.102	0.093	0.39	150	564	488	424			
Issue: Sept	ember 2012									

12.7/22 (24) kV. Made to AS/NZS 1429.1

* Short circuit rating less than 10 kA for 1 s

^ Also complies with AS/NZS 4026

Note:

1. The values in this table are for installation conditions of:

Ambient Air Temperature	30 °C
Soil Temperature	15 °C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	1.0 m

Triple extruded, Dry-cure

3 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 251-13 A

Conductor	Nomi	nal Diameters	Wir	e Screen	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
50	24.6	26.2	20	36 x 0.85	1.0 / 1.0	32.4	1.33
70	26.0	27.6	20	36 x 0.85	1.0 / 1.0	33.8	1.57
95	27.7	29.3	20	36 x 0.85	1.0 / 1.1	35.7	1.88
120	29.1	30.7	20	36 x 0.85	1.0 / 1.1	37.1	2.16
150	30.5	32.1	20	36 x 0.85	1.1 / 1.1	38.7	2.47
185	32.3	33.9	20	36 x 0.85	1.1 / 1.1	40.5	2.88
240	34.6	36.2	20	36 x 0.85	1.1 / 1.2	43.0	3.50
300	36.8	38.4	20	36 x 0.85	1.2 / 1.2	45.4	4.16
400	40.2	41.8	20	36 x 0.85	1.2 / 1.3	49.1	5.10
500	43.5	45.1	20	36 x 0.85	1.3 / 1.3	52.6	6.15
630	47.1	48.7	20	36 x 0.85	1.3 / 1.4	56.4	7.60
Issue: Janu	ary 2012						
19/33 (36)	kV. Made to	AS/NZS 1429.1					

Note:

Triple extruded, Dry-cure

3 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 251-13 B

Conductor	Conductor AC	Inductive	Conductor to	Nominal PVC	Cur	rent Ratings	(A)			
Size	Resistance at 50 Hz and 90°C	Reactance at 50 Hz	Screen Capacitance	Duct Size (Multi Way)		TAVA	78			
(28	5927/	\$ \$\$ 7/			
(mm²)	(Ohm/km)	(Ohm/km)	(μF/km)	(mm)						
50	0.494	0.149	0.14	100 (NZ)	246	216	188			
70	0.342	0.139	0.16	100 (NZ)	304	263	228			
95	0.247	0.133	0.17	100 (NZ)	370	314	272			
120	0.196	0.128	0.19	150	425	356	315			
150	0.159	0.124	0.20	150	482	398	352			
185	0.127	0.119	0.22	150	552	448	396			
240	0.0977	0.114	0.24	150	650	518	458			
300	0.0786	0.110	0.26	150	743	582	514			
400	0.0625	0.106	0.29	150	861	660	582			
500	0.0501	0.102	0.32	200	993	744	682			
630	0.0406	0.098	0.36	200	1139	835	764			
Issue: Janu	ary 2012									
19/33 (36) l	kV. Made to AS/NZ	S 1429.1								

Note:

1. The values in this table are for installation conditions of:Ambient Air Temperature30 °CSoil Temperature15 °CSoil Thermal Resistivity1.2 K.m/WDepth of Burial1.0 m

Screens bonded both ends

10 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 251-14 A

Conductor	Nomi	inal Diameters	Wir	e Screen	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
50 *	24.6	26.2	49	34 x 1.35	1.0 / 1.0	33.4	1.60
70	26.0	27.6	69	48 x 1.35	1.0 / 1.1	35.0	2.04
9 5	27.7	29.3	69	48 x 1.35	1.0 / 1.1	36.7	2.34
120	29.1	30.7	69	48 x 1.35	1.1 / 1.1	38.3	2.63
150	30.5	32.1	69	48 x 1.35	1.1 / 1.1	39.7	2.93
185	32.3	33.9	69	48 x 1.35	1.1 / 1.2	41.7	3.35
240	34.6	36.2	69	48 x 1.35	1.1 / 1.2	44.0	3.96
300	36.8	38.4	69	48 x 1.35	1.2 / 1.2	46.4	4.62
400	40.2	41.8	69	48 x 1.35	1.2 / 1.3	50.1	5.55
500	43.5	45.1	69	48 x 1.35	1.3 / 1.3	53.6	6.60
630	47.1	48.7	69	48 x 1.35	1.3 / 1.4	57.4	8.05
Issue: Janu	ary 2012					I	
19/33 (36)	kV. Made to	AS/NZS 1429.1					

* Short circuit rating less than 10 kA for 1 s

Note:

Triple extruded, Dry-cure

10 kA for 1 s Wire Screens

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 251-14 B

Conductor	Conductor AC	Inductive	Conductor to	Nominal PVC	Cur	rent Ratings	(A)
Size (mm²)	Resistance at 50 Hz and 90°C (Ohm/km)	Reactance at 50 Hz (Ohm/km)	Screen Capacitance (µF/km)	Duct Size (Multi Way) (mm)	8		
50 *	0.494	0.151	0.14	100 (NZ)	248	216	188
70	0.342	0.142	0.16	100 (NZ)	305	262	227
95	0.247	0.134	0.17	150	370	311	276
120	0.196	0.130	0.19	150	424	352	311
150	0.159	0.125	0.20	150	479	392	347
185	0.127	0.120	0.22	150	547	441	389
240	0.0976	0.115	0.24	150	641	506	447
300	0.0786	0.112	0.26	150	729	565	499
400	0.0625	0.107	0.29	200	840	636	583
500	0.0501	0.103	0.32	200	961	711	651
630	0.0405	0.100	0.36	200	1094	790	723

19/33 (36) kV. Made to AS/NZS 1429.1

* Short circuit rating less than 10 kA for 1 s

Note:

1. The values in this table are for installation conditions of:

Ambient Air Temperature	30 °C
Soil Temperature	15 °C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	1.0 m
Screens bonded both ends	

Triple extruded, Dry-cure

3 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 251-23 A

Conductor	Nomi	nal Diameters	Wir	e Screen	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
50	24.5	26.1	20	36 x 0.85	1.0 / 1.0	32.3	1.03
70	26.0	27.6	20	36 x 0.85	1.0 / 1.0	33.8	1.14
95	27.7	29.3	20	36 x 0.85	1.0 / 1.1	35.7	1.28
120	29.1	30.7	20	36 x 0.85	1.0 / 1.1	37.1	1.40
150	30.5	32.1	20	36 x 0.85	1.1 / 1.1	38.7	1.54
185	32.2	33.8	20	36 x 0.85	1.1 / 1.1	40.4	1.71
240	34.6	36.2	20	36 x 0.85	1.1 / 1.2	43.0	1.97
300	36.6	38.2	20	36 x 0.85	1.2 / 1.2	45.2	2.23
400	39.7	41.3	20	36 x 0.85	1.2 / 1.3	48.6	2.61
500	42.8	44.4	20	36 x 0.85	1.3 / 1.3	51.9	3.04
630	46.4	48.0	20	36 x 0.85	1.3 / 1.4	55.7	3.58
800	51.0	52.6	20	36 x 0.85	1.4 / 1.4	60.5	4.28
1000	55.1	56.7	21	37 x 0.85	1.4 / 1.4	64.6	5.05
Issue: Janu	ary 2012						
19/33 (36)	V. Made to A	AS/NZS 1429.1					

Note:

Triple extruded, Dry-cure

3 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 251-23 B

Conductor	Conductor AC	Inductive	Conductor to	Nominal PVC	Cur	rent Ratings	(A)
Size	Resistance at 50 Hz and 90°C	Reactance at 50 Hz	Screen Capacitance	Duct Size (Multi Way)	8	1500	
(mm²)	(Ohm/km)	(Ohm/km)	(μF/km)	(mm)	-100		
50	0.822	0.150	0.14	100 (NZ)	190	167	146
70	0.568	0.139	0.16	100 (NZ)	236	204	177
95	0.411	0.133	0.17	100 (NZ)	287	244	211
120	0.325	0.128	0.19	150	330	277	245
150	0.265	0.124	0.20	150	374	309	274
185	0.211	0.118	0.22	150	430	350	309
240	0.161	0.114	0.24	150	508	405	358
300	0.129	0.110	0.26	150	581	456	402
400	0.101	0.107	0.29	150	677	521	459
500	0.0797	0.103	0.32	200	787	593	544
630	0.0630	0.099	0.35	200	914	674	617
800	0.0509	0.095	0.39	200	1057	759	694
1000	0.0422	0.092	0.43	200	1197	841	768

19/33 (36) kV. Made to AS/NZS 1429.1

Note:

1. The values in this table are for installation conditions of:Ambient Air Temperature30 °CSoil Temperature15 °CSoil Thermal Resistivity1.2 K.m/WDepth of Burial1.0 mScreens bonded both ends

Triple extruded, Dry-cure

10 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 251-24 A

Conductor	Nomi	nal Diameters	Wir	e Screen	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
50 *	24.5	26.1	33	39 x 1.03	1.0 / 1.0	32.7	1.14
70 *	26.0	27.6	46	32 x 1.35	1.0 / 1.1	35.0	1.39
9 5 *	27.7	29.3	62	43 x 1.35	1.0 / 1.1	36.7	1.68
120	29.1	30.7	69	48 x 1.35	1.1 / 1.1	38.3	1.88
150	30.5	32.1	69	48 x 1.35	1.1 / 1.1	39.7	2.00
185	32.2	33.8	69	48 x 1.35	1.1 / 1.2	41.6	2.18
240	34.6	36.2	69	48 x 1.35	1.1 / 1.2	44.0	2.43
300	36.6	38.2	69	48 x 1.35	1.2 / 1.2	46.2	2.69
400	39.7	41.3	69	48 x 1.35	1.2 / 1.3	49.6	3.07
500	42.8	44.4	69	48 x 1.35	1.3 / 1.3	52.9	3.50
630	46.4	48.0	69	48 x 1.35	1.3 / 1.4	56.7	4.05
800	51.0	52.6	69	48 x 1.35	1.4 / 1.5	61.7	4.76
1000	55.1	56.7	69	48 x 1.35	1.4 / 1.5	65.8	5.50

19/33 (36) kV. Made to AS/NZS 1429.1

* Short circuit rating less than 10 kA for 1 s

Note:

Triple extruded, Dry-cure

10 kA for 1 s Wire Screens

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Product Sheet No. 251-24 B

Conductor Size	Conductor AC Resistance at 50 Hz and 90°C	Inductive Reactance at 50 Hz	Conductor to Screen Capacitance	Nominal PVC Duct Size (Multi Way)	Cui	rrent Ratings	(A)
(mm²)	(Ohm/km)	(Ohm/km)	(μF/km)	(mm)		4// 4/	
50 *	0.822	0.151	0.14	100 (NZ)	191	168	146
70 *	0.568	0.142	0.16	100 (NZ)	238	204	178
95 *	0.411	0.134	0.17	150	288	243	215
120	0.325	0.130	0.19	150	331	275	244
150	0.265	0.125	0.20	150	374	307	272
185	0.211	0.120	0.22	150	429	346	306
240	0.161	0.115	0.24	150	505	400	353
300	0.129	0.112	0.26	150	575	448	395
400	0.101	0.108	0.29	150	668	509	449
500	0.0797	0.104	0.32	200	772	576	528
630	0.0630	0.100	0.35	200	891	650	595
800	0.0508	0.097	0.39	200	1023	726	663
1000	0.0421	0.094	0.43	200	1152	799	728
Issue: Janu	uary 2012						

Issue: January 2012

19/33 (36) kV. Made to AS/NZS 1429.1

* Short circuit rating less than 10 kA for 1 s

Note:

1. The values in this table are for installation conditions of:

Ambient Air Temperature	30 °C
Soil Temperature	15 °C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	1.0 m
Screens bonded both ends	

THREE CORE CU 33 KV CABLES

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Triple extruded, Dry-cure

Conductor	Nomii	nal Diameters	Wire Scre	ens (per core)	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
			3 kA fo	or 1 s Wire Scre	ens		
50	24.6	26.2	9.6	17 x 0.85	1.5 / 1.6	66.9	4.15
70	26.0	27.6	10.2	18 x 0.85	1.6 / 1.7	70.4	4.99
9 5	27.7	29.3	10.8	19 x 0.85	1.7 / 1.7	74.5	6.00
120	29.1	30.7	11.3	20 x 0.85	1.7 / 1.8	77.8	6.90
150	30.5	32.1	11.9	21 x 0.85	1.8 / 1.8	81.0	7.95
185	32.3	33.9	12.5	22 x 0.85	1.8 / 1.9	85.1	9.25
240	34.6	36.2	13.1	23 x 0.85	1.9 / 2.0	90.5	11.25
300	36.8	38.4	14.2	25 x 0.85	2.0 / 2.0	95.4	13.40
			10 kA f	or 1 s Wire Scr	eens		
50 *	24.6	26.2	16.5	29 x 0.85	1.6 / 1.6	67.1	4.37
70	26.0	27.6	22.7	40 x 0.85	1.6 / 1.7	70.4	5.35
9 5	27.7	29.3	22.7	40 x 0.85	1.7 / 1.7	74.5	6.35
120	29.1	30.7	22.7	40 x 0.85	1.7 / 1.8	77.8	7.25
150	30.5	32.1	22.7	40 x 0.85	1.8 / 1.8	81.0	8.25
185	32.3	33.9	22.7	40 x 0.85	1.8 / 1.9	85.1	9.55
240	34.6	36.2	22.7	40 x 0.85	1.9 / 2.0	90.5	11.55
300	36.8	38.4	22.7	40 x 0.85	2.0 / 2.0	95.4	13.60

* Short circuit rating less than 10 kA for 1 s

Note:

THREE CORE CU 33 KV CABLES

Copper conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Triple extruded, Dry-cure

Conductor	Conductor AC	Inductive	Conductor to	Nominal PVC	Current Ratings (A)			
Size	Resistance at 50 Hz and 90°C	Reactance at 50 Hz	Screen Capacitance	Duct Size (Single Way)				
(mm²)	(Ohm/km)	(Ohm/km)	(μF/km)	(mm)		477 47		
	1	3	kA for 1 s Wire	Screens	L	L		
50	0.494	0.143	0.14	100 (NZ)	212	200	173	
70	0.342	0.133	0.16	100 (NZ)	262	244	211	
95	0.247	0.126	0.17	150	317	292	256	
120	0.196	0.122	0.19	150	364	331	290	
150	0.159	0.118	0.20	150	411	372	325	
185	0.128	0.113	0.22	150	470	420	367	
240	0.0978	0.108	0.24	150	550	486	425	
300	0.0789	0.104	0.26	150	626	547	478	
		1	0 kA for 1 s Wire	Screens	-	-		
50 *	0.494	0.143	0.14	100 (NZ)	212	200	173	
70	0.342	0.133	0.16	100 (NZ)	262	244	211	
95	0.247	0.126	0.17	150	317	292	256	
120	0.196	0.122	0.19	150	364	331	290	
150	0.159	0.118	0.20	150	411	372	325	
185	0.128	0.113	0.22	150	470	420	367	
240	0.0978	0.108	0.24	150	550	486	425	
300	0.0789	0.104	0.26	150	626	547	478	

* Short circuit rating less than 10 kA for 1 s

Note:

1. The values in this table are for installation conditions of:

Ambient Air Temperature	30 °C
Soil Temperature	15 °C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	1.0 m

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Triple extruded, Dry-cure

Conductor	Nomir	nal Diameters	Wire Scre	ens (per core)	Thickness of	Nominal Overall	Linear
Size	Insulation	Insulation Screen	Area	No. & Size	Sheath PVC/HDPE	Diameter	Mass
(mm²)	(mm)	(mm)	(mm²)	(No. x mm)	(mm)	(mm)	(kg/m)
			3 kA fo	or 1 s Wire Scre	ens		
50	24.5	26.1	9.6	17 x 0.85	1.5 / 1.6	66.7	3.22
70	26.0	27.6	10.2	18 x 0.85	1.6 / 1.7	70.4	3.67
95	27.7	29.3	10.8	19 x 0.85	1.7 / 1.7	74.2	4.18
120	29.1	30.7	11.3	20 x 0.85	1.7 / 1.8	77.5	4.63
150	30.5	32.1	11.9	21 x 0.85	1.8 / 1.8	80.7	5.10
185	32.2	33.8	12.5	22 x 0.85	1.8 / 1.9	84.9	5.70
240	34.6	36.2	13.1	23 x 0.85	1.9 / 2.0	90.5	6.65
300	36.6	38.2	14.2	25 x 0.85	2.0 / 2.0	95.0	7.55
			10 kA f	or 1 s Wire Scre	eens		
50 *	24.5	26.1	10.8	19 x 0.85	1.6 / 1.6	66.9	3.28
70 *	26.0	27.6	15.3	27 x 0.85	1.6 / 1.7	70.4	3.82
9 5 *	27.7	29.3	20.4	36 x 0.85	1.7 / 1.7	74.2	4.45
120	29.1	30.7	22.7	40 x 0.85	1.7 / 1.8	77.5	4.94
150	30.5	32.1	22.7	40 x 0.85	1.8 / 1.8	80.7	5.40
185	32.2	33.8	22.7	40 x 0.85	1.8 / 1.9	84.9	6.00
240	34.6	36.2	22.7	40 x 0.85	1.9 / 2.0	90.5	6.90
300	36.6	38.2	22.7	40 x 0.85	2.0 / 2.0	95.0	7.75

* Short circuit rating less than 10 kA for 1 s

Note:

Aluminium conductor SCXLPE conductor screen TR-XLPE insulation SCXLPE insulation screen Copper wire screens PVC/HDPE sheath

Triple extruded, Dry-cure

Conductor Conductor A		Inductive	Conductor to	Nominal PVC	Current Ratings (A)			
Size	Resistance at 50 Hz and 90°C	Reactance at 50 Hz	Screen Capacitance	Duct Size (Single Way)	$\exists \otimes$			
(mm²)	(Ohm/km)	(Ohm/km)	(μF/km)	(mm)		,,, ,,	,,,	
	1	3	kA for 1 s Wire S	Screens	L	L		
50	0.822	0.143	0.14	100 (NZ)	164	155	134	
70	0.568	0.133	0.16	100 (NZ)	203	189	163	
9 5	0.411	0.126	0.17	150	246	226	198	
120	0.325	0.122	0.19	150	283	257	226	
150	0.265	0.118	0.20	150	319	288	252	
185								
240								
300								
		10	0 kA for 1 s Wire	Screens				
50 *	0.822	0.143	0.14	100 (NZ)	164	155	134	
70 *	0.568	0.133	0.16	100 (NZ)	203	189	163	
9 5 *	0.411	0.126	0.17	150	246	226	198	
120	0.325	0.122	0.19	150	283	257	226	
150	0.265	0.118	0.20	150	319	288	252	
185								
240								
300								

* Short circuit rating less than 10 kA for 1 s

Note:

1. The values in this table are for installation conditions of:

Ambient Air Temperature	30 °C
Soil Temperature	15 °C
Soil Thermal Resistivity	1.2 K.m/W
Depth of Burial	1.0 m

NOTES

SECTION FIVE - AERIALS

PAGE **Explanatory Information** 2-7 **Thermal Characteristics** 2 **Electrical Characteristics** 4 Physical and Mechanical Characteristics 5 Bare Overhead Conductors 7 **Product Sheets** 8-21 AAC Aerial Conductors 8 AAAC Aerial Conductors 10 **ACSR Aerial Conductors** 12 Hard Drawn Cu Aerial Conductors 14 PVC Insulated Hard Drawn Cu Aerial Cables 16 PVC Insulated AAC Aerial Cables 18 Al Aerial Bundled Cables (ABC) 20 Notes 22

THERMAL CHARACTERISTICS

Continuous Current Carrying Capacity

The continuous current carrying capacity of a conductor depends on the permissible conductor temperature rise above ambient air temperature. For the calculation of current ratings of bare overhead conductors, ambient air temperatures between 20°C and 40°C are usually considered.

The maximum permissible continuous operating temperature of an overhead conductor is limited by the permanent effects of high temperatures on the strength of the conductor material. Aluminium wire may be operated indefinitely at temperatures of up to 75°C without significant annealing occurring. Therefore, this temperature is taken as the continuous operating temperature for bare aluminium and aluminium alloy conductors.

For aluminium and aluminium alloy conductors, a maximum operating temperature limit of 100°C is recommended, resulting in approximately 3% loss of strength after 1000 hours of operation. Under emergency operating conditions with higher temperatures, the effect of annealing should be considered. The loss of strength for an AAC or AAAC/1120 conductor operated at 150°C for 10 hours is equivalent to the loss of strength for the same conductor operated at 100°C for 7000 hours. The effect is less significant with steel-reinforced conductors, where the steel provides most of the strength of the conductor and is essentially unaffected by temperature. However, to allow for the effects on grease and fittings, a maximum operating temperature limit of 120°C is recommended in this case.

The maximum load capacity of a long line is usually dictated by consideration of system stability, permissible voltage regulation, or the cost of energy losses. However, the maximum load capacity of a short line may be determined by the maximum permissible operating temperature of the conductor. The maximum permissible operating temperature is that which results in the greatest permissible sag (allowing for creep) or that which results in the maximum allowable permanent loss of tensile strength due to annealing.

The conductor temperature depends on the current load, the electrical characteristics of the conductor, and the atmospheric parameters such as wind and sun. Assuming these factors to be fairly constant, the conductor temperature does not change significantly. In this situation, the heat supplied to the conductor is balanced by the heat dissipated and the thermal condition of the conductor is then defined as "steady state". At such a steady state, with the conductor at maximum permissible temperature, a heat balance equation can be used to calculate the continuous current carrying capacity of a conductor.

The formulae used for the calculations are generally in accordance with those published by V. T. Morgan.

THERMAL CHARACTERISTICS (CONT.)

Ambient Temperature

For dry conductors the choice of ambient temperature has little influence on the increase of the calculated current carrying capacity for a given temperature rise. For example, for temperature rises higher than 30°C, the increase in the current carrying capacity for a given temperature rise above an ambient of 20°C is within 2% of the value obtained with the same temperature rise above an ambient of 35°C. Rain has a major effect on the current carrying capacity of a conductor, and the rating of a wet conductor is higher than that of a dry one. For conductors with a wet surface, the choice of ambient temperature significantly influences the current carrying capacity.

Solar Radiation

Many factors can influence the effect of solar radiation. The altitude of the sun, the clearness ratio of the sky, the incidence of the solar beam and the reflectance of the sun from the ground, affect the magnitude of the solar heat input into the conductor. However, small changes in solar radiation intensity have little effect on the current carrying capacity. An increase in solar radiation intensity from 1000 W/m² to 1200 W/m² decreases the rating of a conductor by about 2%. A value of 1000 W/m² for direct solar radiation and 100W/m² for diffuse solar radiation for summer noon conditions has been chosen as appropriate to general conditions throughout Australia and New Zealand.

Emissivity and Solar Absorption Coefficients

Emissivity is the value between zero and unity which defines the fraction of the black-body radiation that the surface emits. Similarly, absorptivity is the value between zero and unity that defines the fraction of the incident irradiation that is absorbed by the surface. The surface condition of a conductor affects both these parameters, and for convenience they are assumed to be equal.

The Rural Weathered condition is considered to exist on old lines in clean atmospheres and may also exist as sections of new conductor in an old line arising from augmentation or alteration works.

Air Movement

This is the most significant of all the parameters. The rate of increase of the current carrying capacity of a conductor with increasing wind velocity is greatest at low wind velocities. This is partly due to the effect of wind velocity on the radial temperature gradient in the conductor.

Wind direction also affects the current carrying capacity of a conductor. However, it would be difficult to take the variability of the wind into account because of its dependence on many factors, including local topography and climate.

In view of this and of the lack of comprehensive meteorological data across the country, current carrying capacities have been calculated for the theoretical extreme condition of still air and for 1.0 metre/second.

ELECTRICAL CHARACTERISTICS

AC Resistance

The electrical resistance of a conductor with alternating current is greater than its resistance with direct current.

For all-aluminium conductors, the increased resistance is due mainly to skin effect, which causes the current to concentrate in the outer portion of the conductor. Non-uniformity of current distribution is also caused by a proximity effect, which results from electromagnetic fields from nearby conductors. However, for normal spacing of overhead lines this effect is small and can be ignored.

For steel-reinforced conductors the current that follows the spiral of the helically applied aluminium wires around the steel core produces a longitudinal magnetic flux in the steel core. This alternating flux causes both hysteresis and eddy current losses, increasing the effective resistance of the conductor to alternating current. The magnetic flux in the steel varies with current, and is most significant when the number of aluminium layers is odd, because there is incomplete cancellation of the magnetic flux in the steel core.

Skin effect and, in the case of steel-reinforced conductors with single and three layers of aluminium, hysteresis and eddy current effects, were taken into consideration in determining the AC resistance.

Inductive Reactance

The inductive reactance of stranded conductors in an overhead line is calculated by considering the flux linkages caused by current flowing in the conductors. To simplify the calculation, it is usually considered to consist of two components: the conductor component of reactance resulting from the magnetic flux, and the spacing component of reactance resulting from the magnetic flux to the equivalent return conductor.

The conductor component depends on the number of strands and the geometry of the conductor. The spacing component takes into consideration the spacing between conductors and the geometry of the circuit. The reactance of an overhead line is found by adding the two components.

For steel-reinforced conductors, the magnetic flux in the steel core depends on the amount of current flowing in the conductors and is most significant when the number of aluminium layers is odd. However, the magnetic properties of the steel core are highly non-linear, and the conductor component of reactance can be accurately determined only from tests. The values shown in the tables of electrical performance data in the following sections are sufficiently accurate for most practical installations.

Values for inductive reactance to 300 mm horizontal spacing are shown in the following Product Sheets.

PHYSICAL & MECHANICAL CHARACTERISTICS

Sag and Tension

The general theory of sag-tension calculations is based on the fact that a conductor suspended between two points assumes the shape of a catenary. The basic relationship between sag and tension can be established from knowledge of the stress-strain characteristics of a conductor. Factors which will subsequently affect the sag and tension are thermal elongation of the conductor due to changes in temperature, creep with time under load, and increased loadings due to wind and ice. These factors affect the length of the conductor and consequently the sag and tension characteristics.

The physical and mechanical performance characteristics required for sag-tension calculations are shown in the product sheets which follow, and the factors which affect the length of a stranded conductor are briefly explained in the following sections.

Suitable formulae for selecting the appropriate tension are published in AS/NZS 7000:2010, Overhead Line Design - Detailed Procedures.

Stress-Strain Characteristics

The stress-strain behaviour of a stranded conductor depends on the properties of the component wires and the construction of the conductor, including the number of layers and the lay length of the wires.

Stress-strain tests are used to establish the behaviour of a stranded conductor during the initial loading period, and a relationship for its elastic behaviour in its final state. The test procedure used to obtain the stress-strain characteristics is to load and hold the conductor at 30%, 50% and 70% of its calculated breaking load with load-holding periods of 30 minutes, 1 hour and 1 hour respectively and the conductor is unloaded at the end of each holding period.

From the initial loading curve where the conductor is loaded to 30% of its breaking load and held for 30 minutes, the amount of geometric settlement of the component wires, the initial creep and the initial modulus of elasticity can be determined.

Subsequent loading and unloading of the conductor at 50% and 70% of its breaking load with load holding periods of 1 hour, ensures that the component wires are settled and that most of the initial creep has been removed. This leaves the conductor in its final state and the final unloading of the conductor is used to determine the final modulus of elasticity.

The final modulus of elasticity is used for sag-tension calculations to determine the behaviour of a conductor which has been in service for some time and has been subjected to high tensions due to low temperatures, wind and in some cases ice loading.

At some high temperature, all of the load is transferred to the steel and the thermal elongation of the composite conductor is identical to the thermal elongation of the steel core alone. In practice, for normal operating conditions, it is sufficiently accurate to assume a direct relationship between thermal elongation and the coefficient of linear expansion of the composite conductor. The coefficient of linear expansion for the composite conductor may be calculated, taking into account the material properties and the areas of each component making up the conductor.

PHYSICAL & MECHANICAL CHARACTERISTICS (CONT.)

Thermal Elongation

Variations in temperature will change the length of a conductor and this change in length is known as thermal elongation or thermal strain.

For homogeneous AAC, AAAC and hard drawn copper conductors the thermal elongation is directly related to the coefficient of linear expansion of the material.

For composite ACSR and AACSR conductors the thermal elongation is more complex to establish, due to the relationship between stresses and strains of constituent wires. The stress distribution in a composite conductor changes with temperature. Due to the lower coefficient of thermal expansion of steel compared with that of aluminium, a rise in temperature increases the proportion of the tensile load carried by the steel core.

Creep

Creep is defined as the plastic deformation or non-recoverable extension of conductors which occurs with time under load. It can be considered to consist of two components: initial creep and long term creep.

Initial creep is the result of settling in of wires when the conductor is first subjected to maximum tension. This component of creep can be offset by pre-tensioning the conductor at a load higher than the everyday tension (EDT) before final sagging. This procedure can effectively stabilise the conductor before final sagging and also provides a consistent base for determining subsequent long-term creep. If conductors are installed at a value of the tension below that used for final sagging, full allowance for both initial and long term creep should be made.

Long term creep depends on stress, operating temperature and time. It can be calculated from information on the material and design of the conductor. Typically, extensions of 400–500 micrometres per metre may occur over a 30-year life of a line. In order to avoid problems associated with the increase of sag resulting from creep, a number of solutions may be adopted.

One solution is to assume an imaginary lower temperature of installation which would (when the temperature is raised to the actual installation temperature) result in a thermal expansion equal in value to that of the predicted creep. For example, if the predicted creep is equal to the thermal expansion caused by a temperature increase of 20°C, then the installation temperature is assumed to be less than the actual by 20°C. This results in the line being tensioned at a higher EDT than normal at the time of installation. In the 30-year life span of the conductor, the tension will gradually decrease to the value of true EDT.

Alternatively, commercially available computer programs based on the more complex strain-summation method can be used to determine the stringing tension for any given future loading conditions and limiting constraints on one or more parameters. Determining the stringing tension is done by iteration, working forward in time.

Everyday Tension

Aeolian vibration can damage overhead line conductors as a result of mechanical fatigue. The standard practice for preventing fatigue damage is to limit the tension of the conductor to a value that will not subject the conductor to excessive vibration under normal operating conditions.

The tension that may be applied to a conductor is usually expressed as a percentage of the conductor breaking load. As the damage from fatigue is most pronounced in the outer layers of the conductor, the safe tension is based on the allowable stress in the outer layers. Three main factors which cause vibration fatigue on conductors are considered when determining the safe allowable outer layer stress: the type of suspension arrangement used, the terrain, and the efficiency of the vibration damping system, if used. Reference should be made to AS/NZS 7000:2010, Overhead Line Design - Detailed Procedures, for EDT figures.

BARE OVERHEAD CONDUCTORS

Materials

Nexans Olex offers a number of materials meeting the requirements of both Australian and International Standards.

Aluminium 1350: High purity electrical conductor (EC) grade aluminium (alloy 1350) has a conductivity of 61% IACS and UTS of 160–185 MPa.

Aluminium alloy 1120: Nexans Olex alloy 1120 (Ductolex) has a conductivity of 59% IACS and UTS of 240-250 MPa. It provides a conductor with comparable electrical resistance and 40-50% higher strength than a similar conductor of EC grade material. This alloy can be considered a 'high tech' version of EC grade aluminium and offers significant advantages over older type alloys, such as alloy 6201. Steel-reinforced aluminium alloy 1120 conductors have a high strength to weight ratio, resulting in small sags on long span lengths. Fittings for alloy 1120 conductors are similar to those used for EC grade aluminium conductors.

Copper: Hard drawn copper wire produced from high conductivity alloy 110A has a conductivity of 97% IACS and UTS of 405-460 MPa.

Galvanised steel: Galvanised steel wire made from fully-killed steel with a carbon content of 0.6% has a UTS of 1.31-1.39 GPa. It is galvanised by either a hot dip or electrolytic process to give a zinc coating mass of 200–260 g/m².

Construction

The wires in all bare conductors are stranded concentrically with successive layers having an opposite direction of lay, the outermost layer being right-handed. When required, a larger central wire (king wire) is included in a conductor. The diameter of this wire is based on conductor design considerations and is usually 5% greater than the surrounding wires. The incorporation of a king wire is often an advantage for ACSR type conductors, as it ensures that the surrounding layer of wires fits firmly on the central wire.

ACSR conductors may be subjected to corrosive conditions such as high pollution found in industrial areas or salt spray in coastal areas. The application of high melting point grease over the steel wires provides additional protection against corrosion. Aluminium alloy 1120 conductors are becoming more popular as replacements for steel-reinforced conductors in areas of high corrosion risk.

Property of Materials								
Property	Unit	Aluminium	Aluminium Alloy 1120 (Ductolex)	Copper	Galvanised Steel			
Density at 20°C	kg/m³	2700	2700	8890	7800			
Conductivity at 20°C	% IACS	61	59	97	10.1			
Resistivity at 20°C	μΩ.m	0.0283	0.0293	0.01777	0.17			
Constant-Mass Temperature Coefficient of Resistance	per ⁰C	0.00403	0.00390	0.00381	0.0044			
Ultimate Tensile Stress	MPa	160–185	230–250	405–460	1310–1390			
Modulus of Elasticity	GPa	68	68	124	193			
Coefficient of Linear Expansion	per ⁰C	23.0 x 10 ⁻⁶	23.0 x 10−6	17 x 10-6	11.5 x 10-6			

AAC AERIAL CONDUCTORS

Aluminium conductor

Code Name	Stranding (mm)	Cross Sectional Area (mm ²)	Nominal Overall Diameter (mm)	Mass (kg/km)	Breaking Load (kN)
Namu	7/2.11	24.5	6.33	66.9	4.07
Poko	7/2.36	30.6	7.08	83.7	5.09
Ladybird	7/2.79	42.8	8.37	117	6.92
Kutu	7/3.00	49.5	9.00	135	7.98
Fly	7/3.40	63.6	10.2	174	9.98
Rango	7/3.66	73.6	11.0	201	11.2
Grasshopper	7/3.91	84.1	11.7	230	12.8
Wasp	7/4.39	106	13.2	290	16.1
Beetle	19/2.67	106	13.4	292	17.2
Weke	7/4.72	122	14.2	335	18.6
Bee	7/4.90	132	14.7	361	20.1
Cricket	7/5.36	158	16.1	432	24.0
Weta	19/3.35	167	16.8	460	26.2
Pluto	19/3.75	210	18.8	576	31.9
Mata	19/3.86	222	19.3	611	33.8
Cockroach	19/4.22	266	21.1	731	40.4
Butterfly	19/4.65	323	23.3	888	49.1
Cicada	37/4.65	628	32.6	1730	95.6

Notes:

1. Coefficient of linear expansion 23.0 x $10^{-6/\circ}$ C.

2. Modulus of elasticity:

65 GPa for seven (7) and nineteen (19) wire conductors.

64 GPa for thirtyseven (37) wire conductors.

AAC AERIAL CONDUCTORS

Aluminium conductor

Code Name	Calculated DC Resistance at 20°C	Reactance at 50Hz with 300 mm Spacing	Current Rating Still Air	Current Rating 1 m/s
	(Ohm/km)	(Ohm/km)	(Amps)	(Amps)
Namu	1.17	0.321	85	164
Poko	0.936	0.314	98	189
Ladybird	0.670	0.303	121	232
Kutu	0.579	0.299	132	253
Fly	0.451	0.291	155	295
Rango	0.389	0.286	170	323
Grasshopper	0.342	0.282	184	350
Wasp	0.271	0.275	213	403
Beetle	0.271	0.271	213	404
Weke	0.234	0.270	233	441
Bee	0.217	0.268	244	461
Cricket	0.181	0.262	275	515
Weta	0.172	0.257	286	533
Pluto	0.137	0.250	333	612
Mata	0.130	0.248	345	632
Cockroach	0.108	0.242	390	707
Butterfly	0.0895	0.236	443	792
Cicada	0.0460	0.214	689	1178

Note:

1. Current ratings are based on an ambient temperature of 30°C, a maximum conductor temperature of 75°C, rural weathered, summer noon and intensity of solar radiation 1000 W/m².

AAAC AERIAL CONDUCTORS

1120 Aluminium alloy conductor

Code Name	Stranding	Cross Sectional Area	Nominal Overall Diameter	Mass	Breaking Load
	(mm)	(mm²)	(mm)	(kg/km)	(kN)
Chlorine	7/2.50	34.4	7.50	94.3	8.18
Chromium	7/2.75	41.6	8.25	113	9.91
Fluorine	7/3.00	49.5	9.00	135	11.8
Helium	7/3.75	77.3	11.3	211	17.6
Hydrogen	7/4.50	111	13.5	304	24.3
lodine	7/4.75	124	14.3	339	27.1
Krypton	19/3.25	158	16.3	433	37.4
Lutetium	19/3.50	183	17.5	503	41.7
Neon	19/3.75	210	18.8	576	47.8
Nitrogen	37/3.00	262	21.0	721	62.2
Sulfur	61/3.75	674	33.8	1860	145
Issue: Septe	mber 2012				

Notes:

1. Coefficient of linear expansion 23.0 x $10^{-6}/^{\circ}$ C.

2. Modulus of elasticity:

65 GPa for seven (7) and nineteen (19) wire conductors.

64 GPa for thirtyseven (37) and sixtyone (61) wire conductors.

AAAC AERIAL CONDUCTORS

1120 Aluminium alloy conductor

Code Name	Calculated DC Resistance at 20°C	Reactance at 50Hz with 300 mm Spacing	Current Rating Still Air	Current Rating 1 m/s
	(Ohm/km)	(Ohm/km)	(Amps)	(Amps)
Chlorine	0.864	0.310	104	200
Chromium	0.713	0.304	117	224
Fluorine	0.599	0.299	131	250
Helium	0.383	0.285	173	328
Hydrogen	0.266	0.273	217	410
lodine	0.239	0.270	231	438
Krypton	0.189	0.259	271	507
Lutetium	0.163	0.254	299	555
Neon	0.142	0.250	328	603
Nitrogen	0.114	0.242	381	690
Sulfur	0.0444	0.212	711	1210
Issue: Septe	mber 2012			
Made to AS	1531			

Note:

1. Current ratings are based on an ambient temperature of 30°C, a maximum conductor temperature of 75°C, rural weathered, summer noon and intensity of solar radiation 1000 W/m².

ACSR AERIAL CONDUCTORS

Aluminium conductor Galvanised steel reinforced

Code Name	Numbe Strands Diameter	/Wire	Equivalent Aluminium Cross Sectional Area	Nominal Overall Diameter	Mass	Breaking Load	Modulus of Elasticity	Coefficient of Linear Expansion
	Aluminium	Steel	(mm²)	(mm)	(kg/km)	(kN)	(GPa)	(x 10 [.] %C)
Magpie	3/2.11	4/2.11	12.7	6.33	139	17.4	136	13.9
Squirrel	6/2.11	1/2.11	20.7	6.33	84.8	7.49	83	19.3
Gopher	6/2.36	1/2.36	26.0	7.08	106	9.37	83	19.3
Ferret	6/3.00	1/3.00	41.8	9.00	171	14.9	83	19.3
Mink	6/3.66	1/3.66	62.2	11.0	255	21.6	83	19.3
Raccoon	6/4.09	1/4.09	77.7	12.3	318	12.3	83	19.3
Dog	6/4.72	7/1.57	103	14.2	396	32.9	80	19.9
Dingo	18/3.35	1/3.35	155	16.8	505	35.4	71	21.4
Wolf	30/2.59	7/2.59	155	18.1	724	67.4	88	18.4
Jaguar	18/3.86	1/3.86	207	19.3	671	33.0	71	21.4
Goat	30/3.71	7/3.71	317	26.0	1490	135	88	18.4
Zebra	54/3.18	7/3.18	420	28.6	1620	131	78	19.9
Cardinal	54/3.38	7/3.38	474	30.4	1830	149	78	19.9
Moose	54/3.53	7/3.53	517	31.8	1990	159	78	19.9
Pawpaw	54/3.75	19/2.25	584	33.8	2240	178	78	20.0
Issue: Jan Made to A	,		·					

ACSR AERIAL CONDUCTORS

Aluminium conductor Galvanised steel reinforced

Product Sheet No. 310-03 B							
Code Name	Calculated DC Resistance at 20°C	Reactance at 50Hz with 300 mm Spacing	Current Rating Still Air	Current Rating 1 m/s			
	(Ohm/km)	(Ohm/km)	(Amps)	(Amps)			
Magpie	2.23	0.349	59	113			
Squirrel	1.37	0.322	75	145			
Gopher	1.09	0.315	86	167			
Ferret	0.677	0.299	117	223			
Mink	0.455	0.287	152	285			
Raccoon	0.364	0.280	175	326			
Dog	0.274	0.271	210	387			
Dingo	0.182	0.257	274	494			
Wolf	0.183	0.252	280	501			
Jaguar	0.137	0.248	336	616			
Goat	0.0893	0.229	462	814			
Zebra	0.0674	0.222	544	942			
Cardinal	0.0597	0.219	590	1014			
Moose	0.0547	0.216	626	1068			
Pawpaw	0.0485	0.212	678	1148			
Issue: Janua	iry 2012						
Made to AS	3607						

Note:

1. Current ratings are based on an ambient temperature of 30°C, a maximum conductor temperature of 75°C, rural weathered, summer noon and intensity of solar radiation 1000 W/m².

HARD DRAWN CU AERIAL CONDUCTORS

Copper conductor

Cross Sectional Area	Stranding	Nominal Conductor Diameter	Mass	Breaking Load
(mm²)	(mm)	(mm)	(kg/km)	(kN)
6	7/1.04	3.12	53.6	2.51
10	7/1.35	4.05	90.2	4.17
16	7/1.70	5.10	143	6.5
25	7/2.14	6.42	227	10.1
35	19/1.53	7.65	314	14.1
50	19/1.83	9.15	451	20.0
70	19/2.14	10.7	617	26.8
95	37/1.83	12.8	882	39.0
95 Issue: January 2012	37/1.83	12.8	882	39.0
Made to AS 1746				

Notes:

1. Coefficient of linear expansion 17.0 x 10⁻⁶/°C.

2. Modulus of elasticity:

119 GPa for seven (7) wire conductors.

118 GPa for nineteen (19) wire conductors.

117 GPa for thirty seven (37) wire conductors.

HARD DRAWN CU AERIAL CONDUCTORS

Copper conductor

(Ohm/km) 3.03 1.80 1.13	(Ohm/km) 0.365 0.349 0.334	(Amps) 44 61 82	(Amps) 87 120 160
1.80 1.13	0.349	61	120
1.13		•••	-
	0.334	82	160
			100
0.716	0.320	110	212
0.516	0.306	135	260
0.361	0.295	169	323
0.264	0.285	206	392
0.186	0.273	256	486
	I I		
	0.361 0.264	0.361 0.295 0.264 0.285	0.361 0.295 169 0.264 0.285 206

Note:

1. Current ratings are based on an ambient temperature of 30°C, a maximum conductor temperature of 75°C, rural weathered, summer noon and intensity of solar radiation 1000 W/m².

PVC INSULATED HARD DRAWN CU AERIAL CABLES

Copper conductor PVC insulation

Cross Sectional Area	Stranding	Conductor Diameter	Insulation Thickness	Nominal Overall Diameter	Mass	Breaking Load
(mm ²⁾	(mm)	(mm)	(mm)	(mm)	(kg/km)	(kN)
6	7/1.04	3.12	1.0	5.3	80	2.3
10	7/1.35	4.05	1.0	6.3	120	3.9
16	7/1.70	5.10	1.0	7.3	180	5.9
25	19/1.35	6.75	1.2	9.3	300	10.4
35	19/1.53	7.65	1.2	10.3	370	12.7
50	19/1.83	9.15	1.4	12.2	510	17.3
70	19/2.14	10.7	1.4	13.8	710	25.0
9 5	37/1.83	12.8	1.6	16.2	980	32.8

Notes:

- 1. Coefficient of linear expansion 17.0 x 10⁻⁶/°C.
- 2. Modulus of elasticity:
 - 112 GPa for seven (7) wire conductors.
 - 110 GPa for nineteen (19) wire conductors.
 - 108 GPa for thirty seven (37) wire conductors.

PVC INSULATED HARD DRAWN CU AERIAL CABLES

Copper conductor PVC insulation

Product Sheet No. 330-01 B							
Cross Sectional Area	Calculated DC Resistance at 20°C	Inductive Reactance at 50Hz with 300 mm Spacing	Current Rating Still Air	Current Rating 1 m/s			
(mm²)	(Ohm/km)	(Ohm/km)	(Amps)	(Amps)			
6	3.17	0.365	45	81			
10	1.88	0.349	63	110			
16	1.18	0.334	84	147			
25	0.749	0.314	115	194			
35	0.540	0.306	141	235			
50	0.399	0.295	172	281			
70	0.276	0.285	218	353			
95	0.198	0.273	266	421			
Issue: January	2012						
Made to AS/N	ZS 5000.1						

Note:

1. Current ratings are based on an ambient temperature of 30°C, a maximum conductor temperature of 75°C and intensity of solar radiation 1000 W/m².

PVC INSULATED AAC AERIAL CABLES

Aluminium conductor PVC insulation

Product Sheet No. 330-02 A						
Code Name	Stranding	Cross Sectional Area	Insulation Thickness	Nominal Overall Diameter	Mass	Breaking Load
	(mm)	(mm²)	(mm)	(mm)	(kg/km)	(kN)
Namu	7/2.11	24.5	1.2	8.85	119	4.07
Poko	7/2.36	30.6	1.3	9.75	154	5.09
Ladybird	7/2.79	42.8	1.4	11.4	200	6.92
Kutu	7/3.00	49.5	1.4	12.0	224	7.98
Fly	7/3.40	63.6	1.4	13.2	276	9.98
Rango	7/3.66	73.6	1.4	14.0	314	11.2
Wasp	7/4.39	106	1.6	16.6	443	16.1
Beetle	19/2.67	106	1.6	16.8	437	17.2
Weke	7/4.72	122	1.8	18.0	520	18.6
Weta	19/3.35	167	1.8	20.7	650	26.2
Issue: Janua	ary 2012					
Generally ma	ade to AS/NZ	S 5000.1				

Notes:

1. Coefficient of linear expansion $23.0 \times 10^{-6/\circ}$ C.

2. Modulus of elasticity 65 GPa.

PVC INSULATED AAC AERIAL CABLES

Aluminium conductor PVC insulation

Code Name	Calculated DC Resistance at 20°C	Reactance at 50Hz with 300mm Spacing	Current Rating Still Air	Current Rating 1 m/s
	(Ohm/km)	(Ohm/km)	(Amps)	(Amps)
Namu	1.17	0.321	90	152
Poko	0.936	0.314	104	174
Ladybird	0.670	0.303	130	212
Kutu	0.579	0.299	142	232
Fly	0.451	0.291	168	271
Rango	0.389	0.286	185	297
Wasp	0.271	0.275	234	368
Beetle	0.271	0.271	235	369
Weke	0.234	0.270	258	399
Weta	0.172	0.257	317	484
Issue: Janua	ry 2012			
Generally ma	ade to AS/NZS 5000.1			

Note:

1. Current ratings are based on an ambient temperature of 30°C, a maximum conductor temperature of 75°C, rural weathered, summer noon and intensity of solar radiation 1000 W/m².

AL AERIAL BUNDLED CABLES (ABC)

Aluminium conductor XLPE insulation

Cross Sectional Area	Conductor Diameter	Insulation Thickness	Nominal Overall Diameter of Bundle	Mass	Breaking Load
(mm²)	(mm)	(mm)	(mm)	(kg/km)	(kN)
25	5.99	1.3	18.4	200	7.0
35	6.90	1.3	20.6	260	9.8
50	8.05	1.5	23.8	350	14.0
95	11.40	1.7	31.8	680	26.6

Product Sheet No. 330-04 A (Three Core)							
Cross Sectional Area	Conductor Diameter	Insulation Thickness	Nominal Overall Diameter of Bundle	Mass	Breaking Load		
(mm²)	(mm)	(mm)	(mm)	(kg/km)	(kN)		
35	6.90	1.3	22.2	390	14.7		
Issue: January 20	Issue: January 2012						
Made to AS/NZS	3560.1						

CrossSectional Area	Conductor Diameter	Insulation Thickness	Nominal Overall Diameter of Bundle	Mass	Breaking Load
(mm²)	(mm)	(mm)	(mm)	(kg/km)	(kN)
25	5.99	1.3	22.2	400	14.0
35	6.90	1.3	24.9	520	19.6
50	8.05	1.5	28.7	700	28.0
70	9.69	1.5	32.8	960	39.2
95	11.40	1.7	38.4	1350	53.2
120	12.90	1.7	42.2	1660	67.2
150	14.35	1.7	45.6	2020	84.0

Notes:

1. Coefficient of linear expansion 23 x 10⁻⁶/°C.

2. Modulus of elasticity 59 GPa up to and including 50 mm² and 56 GPa for conductors above 50 mm².

AL AERIAL BUNDLED CABLES (ABC)

Aluminium conductor XLPE insulation

Cross Sectional Area	Calculated DC Resistance at 20°C	Maximum AC Resistance at 80°C	Positive Sequence Reactance at 50Hz	Current Rating
(mm²)	(Ohm/km)	(Ohm/km)	(Ohm/km)	(Amps)
25	1.20	1.49	0.102	118
35	0.868	1.08	0.0982	140
50	0.641	0.796	0.0924	168
95	0.320	0.398	0.0868	258

Product Sheet No. 330-04 B (Three Core)						
Cross Sectional Area	Calculated DC Resistance at 20°C	Maximum AC Resistance at 80°C	Positive Sequence Reactance at 50Hz	Current Rating		
(mm²)	(Ohm/km)	(Ohm/km)	(Ohm/km)	(Amps)		
35	0.868	1.08	0.0982	134		
Issue: January 2	Issue: January 2012					
Made to AS/NZS	3560.1					

Product Sheet No. 330-05 B (Four Core)					
Cross Sectional Area	Calculated DC Resistance at 20°C	Maximum AC Resistance at 80°C	Positive Sequence Reactance at 50Hz	Current Rating	
(mm²)	(Ohm/km)	(Ohm/km)	(Ohm/km)	(Amps)	
25	1.20	1.49	0.102	109	
35	0.868	1.08	0.0982	134	
50	0.641	0.796	0.0924	157	
70	0.443	0.551	0.0893	196	
95	0.320	0.398	0.0868	241	
120	0.253	0.315	0.0844	280	
150	0.206	0.257	0.0844	314	
Issue: January 2	012				
Made to AS/NZS	3560.1				

Note:

1. Current ratings are based on an ambient temperature of 30°C, a maximum conductor temperature of 80°C, wind speed of 1 m/s and intensity of solar radiation 1000 W/m².

NOTES